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We present in this letter a realistic construction of the coherent states for the Morse
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1. Introduction

The one-dimensional Morse potential was first introduced as a useful model for

diatomic molecules in 1929.1 Since its introduction, the Morse oscillator has

proved very useful for various problems in diverse fields of physics and chemistry

(diatomic and polyatomic molecular systems, quantum chemistry, spectroscopy,

chemical bonds); see Refs. 2–7 and the references therein.

On the other hand, since the pioneer papers of Glauber, Klauder and Perelomov

about the coherent states of the one-dimensional harmonic oscillator,8,9 and their

different applications in physics,10 this approach has been paid attention also for

other potentials. The three way to define the coherent states for the one-dimensional

harmonic oscillator, i.e.:

(1) as states which minimize the uncertainty relations;

(2) as states which diagonalize the lowering operator, and

(3) as states obtained by action of the displacement operator on the bound

state,
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which in this case are convergent (lead to the same results), for an another an-

harmonic potential lead to the three kind of states, generically named: Barut–

Girardello, Klauder–Perelomov and Gazeau–Klauder.11–13

Based on these papers, the coherent states was constructed for a series of po-

tentials (see, Refs. 14–18).

For the pseudoharmonic oscillator, the Barut–Girardello coherent states, as well

as the photon-added Barut–Girardello coherent states was constructed.19,20 (See

also, Ref. 21.)

For the Morse oscillator, the construction of generalized coherent states began

in Ref. 3. Recently, Dong have constructed the coherent states based on the SU(2)

realization for the Morse potential,22 Fakhri and Chenaghlou have constructed the

Barut–Girardello coherent states for the Morse potential,23 while Roy and Roy, and

also Popov have constructed and examined the properties of the Gazeau–Klauder

coherent states for the same potential.24,25 So, the examination of the Klauder–

Perelomov coherent states for the Morse potential, which is the main aim of this

paper becomes a naturally task.

This paper is organized as follows. In Section 2, after a brief recall of the main

facts and properties of the Morse oscillator, we deduce the corresponding raising

and lowering operators and we construct the Klauder–Perelomov coherent states for

this oscillator. Section 3 is devoted to the examination of the statistical properties

of these coherent states, by examining a quantum canonical ideal gas of Morse oscil-

lators, in thermodynamical equilibrium with the reservoir. The concluding remarks

will be given in Section 4.

2. Klauder–Perelomov Coherent States

We shall begin by recalling some basic facts of the Morse potential, mainly the

eigenstates and corresponding creation and annihilation operators. The Hamilto-

nian for a one-dimensional quantum particle evolving in the Morse potential is

given by

H l
− = −

d2

dx2
+ V l(x) (1)

where

V l(x) = (l + 1)2 − (2l + 3)e−x + e−2x (2)

with l is an integer to simplify. The energies are given by

El
n = (l + 1)2 − (l + 1 − n)2 (3)

where the quantum number n takes the finite sequence of values: 0, 1, . . . , l.

The discrete spectrum of the Morse potential is finite and this fact is very

important in the construction of his coherent states as we will discuss in the sequel

of this note.
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Because the ground state is zero energy, it is well known that one can factorize

the Hamiltonian as

H l
− = X+

l X
−
l (4)

where the operators X±
l (hermitian conjugated of each other, i.e. (X+

l )† = X−
l )

are given by

X±
l = ∓

d

dx
− (e−x − (l + 1)) . (5)

From the supersymmetric quantum mechanics, it is well established that the

supersymmetric partners

H l
∓ = X±

l X
∓
l = −

d2

dx2
+ e−2x − (2(l + 1) ± 1)e−x + (l + 1)2 (6)

have the same energy spectra, but different eigenstates. Indeed, it is easy to verify

that

H l
+ = H l−1

− + (2l + 1) (7)

which implies that the eigenstates of H l
+ can be obtained from |ψl

n〉 corresponding

to H l
− by substituting l by l − 1. The Schrödinger equations for H l

∓ are

H l
∓|ψ

l− 1

2
±s

n 〉 =

[

(l + 1)2 −

(

l +
1

2
± s− n

)2
]

|ψ
l− 1

2
±s

n 〉 , (8)

where s = 1
2 . It is straightforward to check, for each l, the intervening relations

X∓
l H

l
∓ = H l

±X
∓
l . (9)

Due to the latter relations the operators X±
l link the Hilbert spaces Hl±s− 1

2

and Hl∓s− 1

2 spanned by the bounded states of the Morse potential. They connect

eigenfunctions with the same energy. Indeed one has

X l
−|ψ

l
n〉 =

√

El
ne

iα(2(l−n)+1)|ψl−1
n−1〉 , (10)

X l
+|ψ

l−1
n 〉 =

√

El
n+1e

−iα(2(l−n)+1)|ψl
n+1〉 , (11)

where α ∈ R. The operators X l
− and X l

+ are not the ladder operators of the

Hamiltonian H l
−. To define the creation and annihilation operators for H l

−, we

define the operator

U =
∑

m

|ψl
m〉〈ψl−1

m | (12)

satisfying U+U = 1 and |ψl
n−1〉 = U |ψl−1

n−1〉. Using the transformation U , define a

new pair of operators

Al
+ = X l

+U
+ , Al

− = UX l
− . (13)
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Combining Eqs. (10), (11) and (12), we get the actions of Al
+ and Al

− on the

eigenstates {|ψl
n〉} as

Al
−|ψ

l
n〉 =

√

El
ne

iα(2(l−n)+1)|ψl
n−1〉 , (14)

Al
+|ψn〉 =

√

El
n+1e

−iα(2(l−n)+1)|ψl
n+1〉 . (15)

The set of operators {Al
−, A

l
+} are the creation and annihilation operators of

H l = Al
+A

l
− = X l

+X
l
−. They satisfy the following commutation relations

[Al
−, A

l
+] = −2N + (2l + 1) (16)

where the operator N is given by

N |ψl
n〉 = n|ψl

n〉 . (17)

The algebra generated by Al
−, Al

+ and N provides the appropriate tool to build up

the coherent states for the Morse potential.

The so-called Klauder–Perelomov coherent states for quantum system embedded

in the Morse potential are defined

|z, α〉 = exp(zAl
+ − z̄Al

−)|ψl
0〉 . (18)

Expanding the displacement operator and using the actions of the creation and

annihilation operators, it comes

|z, α〉 =

l
∑

n=0

znI l
n(|z|)e−iαEn |ψl

n〉 , (19)

where

I l
n(|z|) =

∞
∑

j=0

(−|z|2)j

(n+ 2j)!
∆l(n+ 1, j) . (20)

The quantities ∆ which occur in the last formula are given by

∆l(n+ 1, j) =
n!(2l + 1)!

(2l + 1 − n)!

n+1
∑

i1=1

El
i1

i1+1
∑

i2=1

El
i2
· · ·

ij−1+1
∑

ij=1

El
ij

(21)

with

∆l(n+ 1, 0) =
n!(2l + 1)!

(2l+ 1 − n)!
.

They satisfy the following reccurence equation

∆l(n+1, j) =
√

2n(l+ 1) − n2∆l(n, j)+
√

2nl+ 2l + 1 − n2∆l(n+2, j−1) . (22)

Setting

J l
n(|z|) = |z|n

√

(2l+ 1 − n)!

n!(2l + 1)!
I l
n(|z|) , (23)
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we get the first order differential equation

dJ l
n(|z|)

d|z|
= J l

n−1(|z|) − (2nl+ 2l + 1 − n2)J l
n+1(|z|) . (24)

The solution of this equation takes the simple form

J l
n(|z|) =

1

n!
(cos(|z|))l−1(tg(|z|))n , (25)

and the Morse coherent states rewrite as

|Z, α〉 = (1 + |Z|2)−
l
2

l
∑

n=0

√

l!

n!(l − n)!
Zne−iαEl

n |ψl
n〉 (26)

where Z = z
|z| tg(|z|). They have the property of strong continuity in the label space

and completeness in the sense that there exists a positive measure such that they

solve the resolution to identity. The appropriate form of this resolution is

∫

dµ(Z, Z̄)|Z, α〉〈Z, α| =

l
∑

n=0

|ψl
n〉〈ψ

l
n| . (27)

To determine the measure dµ(Z, Z̄), we assume this property and we set

dµ(Z, Z̄) = (1 + |Z|2)lh(|Z|2)|Z|d|Z|dθ/π (28)

with Z = |Z|eiθ. Substituting Eq. (28) into Eq. (27), we obtain the following sum

which should be satisfied by the function h(x = |Z|2)),
∫ ∞

0

xnh(x)dx =
n!(l − n)!

l!
. (29)

The inverse Mellin transform gives

h(x) =
l + 1

(1 + x)l+2
. (30)

This result can be obtained also by using the definition of Meijer’s G-function

and the Mellin inversion theorem.26

Due to phase introduced in the definitions of annihilation and creation operators,

the obtained coherent states are temporally stable. Indeed

e−itHl
− |Z, α〉 = |Z, α+ t〉 . (31)

The physical utility of Klauder–Perelomov coherent sates for the Morse potential

(26) in different applications consists in the calculation of the expectation (mean)

values of a certain physical observable A which characterizes the quantum system

embedded in the Morse potential, with respect to |Z, α〉:

〈Z, α|A|Z, α〉 ≡ 〈A〉Z (32)

= (1 + |Z|2)−l

l
∑

n,m=0

√

(

l

n

)(

l

m

)

ZnZ̄me−iα(El
n−El

m)〈ψl
m|A|ψl

n〉 (33)
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where we have used the binomial coefficients:27
(

l

n

)

=
l!

n!(l − n)!
=

Γ(l + 1)

Γ(n+ 1)Γ(l + 1 − n)
. (34)

From a practical point of view, the most important operators are the diagonal

operators in the eigenstates-basis |ψl
n〉 corresponding to H l

−, so that

〈ψl
m|A|ψl

n〉 = anδmn . (35)

If A = Ns, where the operator N is given by Eq. (17) and s is an integer, we

have:

〈Ns〉 =
1

(1 + x)l

l
∑

n=0

(

l

n

)

nsxn =
1

(1 + x)l

(

x
d

dx

)s

(1 + x)l , (36)

where we have used the simplified notation: x = |Z|2.

For s = 1 and 2 we obtain, successively:

〈N〉Z = l
x

1 + x
, (37)

〈N2〉Z = l
x

1 + x
+ l(l − 1)

(

x

1 + x

)2

. (38)

These expectation values are useful in order to calculate the second-order cor-

relation function for the Morse oscillator:28

(g2)Z =
〈N2〉Z − 〈N〉Z

(〈N〉Z)2
=
l − 1

l
< 1 . (39)

Moreover, the Mandel Q-parameter is29

QZ = 〈N〉Z [(g2)Z − 1] = −
x

1 + x
< 0 . (40)

These quantities provide information about the inherent statistical properties

of the Klauder–Perelomov coherent states of the Morse oscillator |Z, α〉. These

properties depend on the analytical expressions of the functions (39) and (40) as

depending on the variable x = |Z|2. Because of the structure of these functions,

(g2)Z and QZ can be evaluated analytically. Generally speaking, the states |Z, α〉

exhibit sub-Poissonian statistics for those values of x = |Z|2 for which QZ < 0

(or (g2)Z < 1) (antibunching effect), Poisson statistics for values for which QZ = 0

(or (g2)Z = 1) and supra-Poissonian statistics for values of Z for which QZ > 0 (or

(g2)Z > 1) (bunching effect). As we see from the above equations, the Klauder–

Perelomov coherent states of the Morse oscillator |Z, α〉 are sub-Poissonian, for all

values of the variable |Z|2.

By putting A = H l
− and using the eigenvalue equation (3), we obtain the action

identity:

〈H l
−〉Z =

1

(1 + x)l

l
∑

n=0

(

l

n

)

xnEl
n = 2(l+ 1)〈N〉Z − 〈N2〉Z

= l(2l+ 1)
x

1 + x
− l(l− 1)

(

x

1 + x

)2

≡ f(x) . (41)
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We see that this is a certain function of the label x = |Z|2 and this fact char-

acterizes all the coherent states corresponding to systems with a finite dimensional

energy spectrum, as it was mentioned earlier.24,25

3. Statistical Properties

We consider a quantum gas of the Morse oscillators in thermodynamic equilibrium

with the reservoir (the thermostat) at temperature T , which obeys the quantum

canonical distribution. Also, we consider that the individual Morse oscillators are

in such states which are labelled by number state vectors |ψl
n〉. The corresponding

normalized density operator for a fixed l-parameter (or, equivalently, for a fixed

Morse oscillator) is then

ρl =
1

Zl

l
∑

n=0

e−βεl
n |ψl

n〉〈ψ
l
n| , (42)

where β = (kBT )−1, kB is Boltzmann’s constant and Zl — the normalization

constant, i.e. the partition function for a certain fixed parameter l:

Zl =
l
∑

n=0

e−βεl
n . (43)

In the above exponential it appear the dimensional Morse eigenenergies:

εl
n ≡

~ω

2(l + 1)
El

n = ~ωn−
~ω

2(l + 1)
n2 (44)

where ω is the angular frequency for the Morse oscillator with a fixed parameter l.

The Q-function (the Husimi’s function), i.e. the diagonal elements of the density

operator in the representation of coherent states, is

〈Z, α|ρl|Z, α〉 =
1

Zl

l
∑

n=0

e−βεl
n

(

l

n

)

xn . (45)

It is not difficult to verify that the normalization condition of the density oper-

ator is accomplished

Tr ρl =

∫

dµ(Z, Z̄)〈Z, α|ρl|Z, α〉 = 1 (46)

where we have used the following integral:27,30

∫ ∞

0

dxxα−1(x+ z)−γ = zα−γB(α, γ − α) = zα−γ Γ(α)Γ(γ − α)

Γ(γ)
. (47)

If we consider the dimensional Morse Hamiltonian, and the dimensional eigen-

values of energy, instead of H l
− and El

n, then the corresponding energy exponential

can be written as follows

βεl
n = β~ωn− β

~ω

2(l + 1)
n2 ≡ An− Bn2 . (48)
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For most of the diatomic molecules B � A. So, the limits of the parameter

2(l + 1) are very large, e.g. 37.1586 for H2 molecule, i.e. for a “light” molecule,

and 348.78 for I2, a “heavy” molecule.31 As a consequence, the quantity B can be

regarded as a perturbation constant and the energy exponential can be expanded

in the power series as follows

e−βεl
n = e−An

∞
∑

k=0

Bk

k!
n2k =

∞
∑

k=0

Bk

k!

(

d

dA

)2k

[e−A]n . (49)

We can also use the following operator identity:

∞
∑

k=0

Bk

k!

(

d

dA

)2k

≡ exp

[

B

(

d

dA

)2
]

. (50)

Taking into account this ansatz, after the straightforward calculations, we can

write the Q-function in the following manner

〈Z, α|ρl|Z, α〉 =
1

Zl

exp

[

B

(

d

dA

)2
]

(

1 + xe−A

1 + x

)l

. (51)

Since the Klauder–Perelomov coherent states for the Morse oscillator |Z, α〉

form an overcomplete set of states, they may be used as a basis set despite the fact

that they are not orthogonal. Let us perform the diagonal expansion of the density

operator ρl in the coherent states basis:

ρl =
1

Zl

∫

dµ(Z, Z̄)|Z, α〉Pl(|Z|
2)〈Z, α| . (52)

In order to find the quasi-probability distribution function Pl(|Z|
2) (or the P -

function) from the above diagonal expansion, we observe that the equation

〈f |ρl|g〉 =
1

Zl

∫

dµ(Z, Z̄)〈f |Z, α〉Pl(|Z|
2)〈Z, α|g〉 (53)

must be fulfilled for any arbitrary vectors 〈f | and |g〉 from the Hilbert space (or,

for any vectors from the basis |Z, α〉 or |ψl
n〉).

The left-hand side of this equation is

LHS =
1

Zl

l
∑

n=0

e−βεl
n〈f |ψl

n〉〈ψ
l
n|g〉 , (54)

while, after the angular integration

1

2π

∫ π

−π

dθe−i(n−m)θ = δnm , (55)

the right-hand side becomes

RHS =
1

Zl

l
∑

n=0

(

l

n

)

〈f |ψl
n〉〈ψ

l
n|g〉2(l+ 1)

∫ ∞

0

d|Z‖Z|2n+1 1

(1 + |Z|2)l+2
Pl(|Z|

2) .

(56)
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After the variable change x = |Z|2 we must have:
∫ ∞

0

dxxn 1

(1 + x)l+2
Pl(x) = e−βεl

n
1

l + 1

(

l

n

)−1

= e−βεl
n

1

l + 1

Γ(n+ 1)Γ(l + 1 − n)

Γ(l + 1)
, (57)

where Pl(x) is an unknown function. In order to determine it, we extend the previous

ansatz referring to the energy exponential.25

It is obvious that the P -function also depends on the quantities A and B, besides

the variable x. This leads to the idea that Pl(x) ≡ Pl(x,A,B) can also be expanded

in a power series similarly to the energy exponential (49) in the following manner:

Pl(x) =

∞
∑

k=0

Bk

k!

[

(

d

dA

)k

Pl(x,A,B)

]

B=0

≡

∞
∑

k=0

Bk

k!

(

d

dA

)2k

Xl(x,A) , (58)

where the function Xl(x,A) is to be determined.

By inserting Eqs. (49) and (58) into Eq. (57), performing the function change,

we obtain:

Xl(x,A) =
1

Γ(l + 2)
(1 + x)l+2hl(x,A) (59)

as well as by extending the natural values of n to complex s such as n = s− 1, we

get to the following Stieltjes moment problem
∫ ∞

0

dxxs−1hl(x,A) = eA
1

(eA)s
Γ(s)Γ(l + 2 − s) . (60)

The solution of such a problem is26

hl(x,A) = eAG11
11

(

eAx

∣

∣

∣

∣

∣

−l− 1

0

)

= eAΓ(l + 2)
1

(1 + eAx)l+2
. (61)

Finally, the P -function is

Pl(x) = exp

[

B

(

d

dA

)2
][

eA
(

1 + x

1 + eAx

)l+2
]

(62)

where we have use the operator identity (50).

The scalar product of two Klauder–Perelomov coherent states for the Morse

oscillator is

〈Z, α|Z ′, α〉 =
(1 + Z̄Z ′)l

(1 + |Z|2)
l
2 (1 + |Z ′|2)

l
2

. (63)

From the trace condition (Tr ρl = 1) applied to the diagonal expansion (52)

and the scalar product, it is not difficult to prove that the P -function satisfies the

normalization condition:

1

Zl

∫

dµ(Z, Z̄)Pl(|Z|
2) = 1 . (64)
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Let us verify this equation using the our obtained expression for the P -function

(62). Thus, we have

I ≡
1

Zl

(l + 1)

∫ 2π

0

dθ

π

1

2

∫ ∞

0

dx
1

(1 + x)2
exp

[

B

(

d

dA

)2
] [

eA
(

1 + x

1 + eAx

)l+2
]

=
1

Zl

(l + 1) exp

[

B

(

d

dA

)2
]

[

eA
∫ ∞

0

dx(1 + x)l(1 + expAx)−l−2

]

. (65)

The last integral is of the following kind:27,30

∫ ∞

0

(ax+ b)β−1

(cx+ d)β+1
=

(ad)β − (bc)β

β(ad− bc)(cd)β
, [cd > 0; ad 6= bc; Re β ≥ 1] . (66)

This lead to the results:

I =
1

Zl

exp

[

B

(

d

dA

)2
]

[

1 − (eA)l+1

(1 − eA)(eA)l

]

=
1

Zl

exp

[

B

(

d

dA

)2
][

l
∑

n=0

(e−A)n

]

= 1 . (67)

So, our obtained expression for the P -function (62) is correct.

In this way, the diagonal representation of the normalized density operator of

the Morse oscillator in the Klauder–Perelomov coherent states representation is

ρl =
1

Zl

∫

dµ(Z, Z̄) exp

[

B

(

d

dA

)2
]

[

eA
(

1 + |Z|2

1 + eA|Z|2

)]

|Z, α〉〈Z, α| . (68)

Then the thermal expectation value (the thermal average) of an observable A

concerning the Morse oscillator is given by

〈A〉l = Tr(ρlA) =
1

Zl

∫

dµ(Z, Z̄)Pl(|Z|
2)〈Z, α|A|Z, α〉 . (69)

If the operator A is an integer power s of the number operator N , then, using

Eqs. (69), (36), (47), as well as (49), we obtain the expected result:

〈Ns〉l =
1

Zl

l
∑

n=0

nse−βεl
n =

1

Zl

(−1)s

(

∂

∂A

)s

Zl . (70)

With this result we can define and calculate the thermal second-order correlation

function (g(2))l and the thermal Mandel parameter Ql, i.e. the thermal analogue of

the corresponding functions for the Klauder–Perelomov coherent states |Z, α〉 (see,

Eqs. (39) and (40)):

(g(2))l =
〈N2〉l − 〈N〉l

(〈N〉l)2
= 1 +

1
∂

∂A lnZl

+

(

∂
∂A

)2
lnZl

(

∂
∂A lnZl

)2 , (71)

Ql = 〈N〉l[(g
(2))l − 1] = −1 −

(

∂
∂A

)2
lnZl

∂
∂A lnZl

. (72)
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The difference between these results and the similar results for the Gazeau–

Klauder quasi-coherent states of the Morse oscillator25 (i.e. the absence of the term

1/2) is due definition of the Morse energy eigenstates (3), comparing by

En = ~ω

(

n+
1

2

)

−
~ω

2(l + 1)

(

n+
1

2

)2

. (73)

(See, Eq. (3) in Ref. 25).

4. Discussion and Outlook

In conclusion, we have given a construction of Klauder–Perelomov coherent states

associated with the bound states of the Morse potential. These states possess

all properties of the usual coherent states as continuity, overcompletion, non-

orthogonality and temporal stability, being defined on the entire complex space

of the variable Z.

In order to examine the statistical properties of these states, we have concen-

trated our attention on a quantum system which consists of the quantum canonical

ideal gas of Morse oscillators, in thermodynamic equilibrium with the reservoir

(thermostat). Firstly, we have obtained the expressions of the diagonal elements

of the density operator in the Klauder–Perelomov coherent states (the Husimi’s

Q-function), as well as the diagonal representation of the density operator and the

corresponding P -function. With these functions we are able to express the ther-

mal expectations (thermal averages) for the physical quantities which characterize

the Morse oscillator quantum system. The second-order correlation function and

the Mandel parameter, as well as their corresponding thermal pairs, offer the in-

formation on the character of the coherent states, versus the Poisson distribution

function.

Besides the implicit construction of the Klauder–Perelomov coherent states for

the Morse potential and examination of their properties, the main results of this

paper are the derivation of the integration measure and the deduction of the ex-

pressions for Q- and P -functions and, consequently, the thermal averages calculated

with these functions. In our opinion, the above obtained results seems to be entire

new, because, to our knowledge, these results have not yet been published in the

literature.

By using the general expression for thermal averages one can easy be deduced

some interesting concrete thermal averages for the Morse oscillators quantum canon-

ical ideal gas as: free and internal energy, entropy and molar heat capacity at the

constant volume and so on.
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