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Density Matrix Theory for the BDS-Hamiltonian
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In the present paper, we have extended the usual uncertainty relations, as well as the
entropic uncertainty relations to the mixed states, particularly to the thermal states,
using the density matrix formalism. As quantum model we have choosen the quantum
mechanical ideal gas with the harmonic oscillator-like HamiltonianHλ, introduced by
Beckers, Debergh and Szafraniec, generically named BDS-Hamiltonian.

1. INTRODUCTION

Although much has been written about the harmonic oscillator coherent states,
beginning from the fundamental papers of Glauber (1963), Klauder (1963), and
Stoler (1970) and culminating by the well-known works about the applications of
the coherent states (see, e.g., Klauder and Skagerstam, 1985; Perelomov, 1986;
Zhanget al., 1990), the interests for the coherent and, also, for the squeezed states
actually remain.

Recently, Beckerset al. (1998) have proposed a new set of squeezed states
where a new bosonic creation operatora+λ is defined, which depends on a real
continuos parameterλ, in the following way:

a+λ ≡ a+ + λI , (1)

wherea+ is the usual bosonic creation operator, which is Hermitic conjugate of
the annihilation operatora. With these operators,a+λ ,a

+, anda, it can be proved
that the corresponding Heisenberg algebra is[

a, a+λ
] = [a, a+

] = I . (2)

Then, the following new operator can be constructed as the analogue of a
Hamiltonian operator (Beckerset al., 1998):

Hλ = hω

2

[
a,a+λ

]
+ =

hω

2

[
a,a+

]
+ + λhωa ≡ H (0)+ λhωa. (3)
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HereH (0) is the Hamiltonian of the usual one-dimensional harmonic oscillator
(HO-1D):

H (0) = hω

2

[
a,a+

]
+ = hω

(
a+a+ 1

2

)
. (4)

By using the well-known relations of the bosonic annihilation and creation
operators (Messiah, 1969):

a = 1√
2

(√
mω

h
x + i

1√
mhω

p

)
= 1√

2

(√
mω

h
x +

√
h

mω

∂

∂x

)
, (5)

a+ = 1√
2

(√
mω

h
x − i

1√
mhω

p

)
= 1√

2

(√
mω

h
x −

√
h

mω

∂

∂x

)
, (6)

the operatorHλ can be written with respect to the variablex, as follows:

Hλ(x) = −1

2

h2

m

∂2

∂x2
+ 1

2
mω2x2+ λ√

2
hω

√
h

mω

∂

∂x
+ λ√

2
hω

√
mω

h
x. (7)

Moreover, by using the well-known relations

[x, p] = i h, p = −i h
∂

∂x
, x = i h

∂

∂p
, (8)

the same operator can be rewritten with respect to the variablep, as follows:

Hλ(p) = −1

2
h2mω2 ∂

2

∂p2
+ 1

2

1

m
p2+ λ√

2
i hω
√

mhω
∂

∂p

+ λ√
2

i hω

√
1

mhω
p. (9)

Notice that, in both the representations (the position{x} and the momentum
{p}), the operatorHλ has the same mathematical expression:

Hλ(ξ ) = −1

2
a1
∂2

∂ξ2
+ 1

2
a2ξ

2+ λ√
2

a3
∂

∂ξ
+ λ√

2
a4ξ. (10)

We refer in this paper theλ-dependent operatorHλ as theBDS-Hamiltonian
and the Hamiltonian of theharmonicλ-oscillatorasH O(λ).

The variableξ and the coefficientsai can be carried out from Table I.
The aim of this paper is to find the explicit form of the density matrix that

correspond to the BDS-Hamiltonian. After that, we intend to use this density
matrix to calculate some thermal moments, the uncertainty product and the entropic
uncertainty relations.

By writing the BDS-Hamiltonian as given in Eq. (10), we can solve this
problem by finding the density matrix in both representations in a common manner.
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Table I.

ξ

ai x p

a1
h2

m mh2ω2

a2 mω2 1
m

a3 hω
√

h
mω i hω

√
mhω

a4 hω
√

mω
h i hω 1√

m hω

|q| 1 1

2. DENSITY MATRIX FOR THE HO(λ)

Let us consider a quantum system ofN identical noninteracting harmonicλ-
oscillators, that is,H O(λ), each with the BDS-HamiltonianHλ, in thermodynam-
ical equilibrium with the reservoir (thermostat) at the temperatureT = (kBβ)−1,
wherekB is the Boltzmann constant. This quantum system fullfil the conditions of
the quantum canonical distribution. The basic function for the examination of the
physical and chemical properties of such systems is the canonical density matrix.
In the representation of the variableξ , the density matrixρλ(ξ, ξ ′;β) is defined as

ρλ(ξ, ξ
′;β) =

∑
v

e−βEv9v,λ(ξ )9∗v, λ(ξ
′), (11)

wherev is the vibrational quantum number and9v(ξ ) andEv are the eigenfunc-
tions and the eigenvalues, respectively, of the HamiltonianHλ. In the position
representation{x}, these expressions were carried out as (Beckerset al., 1998)

9v, λ(x) =
[ (

mω
π h

)1/2
2vv!L (0)

v (−λ2)

]1/2

e−
mω
2 h x2

Hv

(√
mω

h
x + λ√

2

)
, (12)

Ev = hω

(
v + 1

2

)
. (13)

In comparison with the ordinary harmonic oscillator (HO), theH O(λ) has the
same eigenvalues, but the corresponding eigenfunctions are different: It appears
as Hermite polynomials with the displaced argument and, more so as generalized
Laguerre polynomials in the denominator of the normalization constant. As a
consequence, the use of Eq. (12) in the definition (11) for building the density
matrix is relatively difficult.

In order to avoid this difficulty, we propose another way to find the density
matrix. Namely, it is well known that the canonical density matrix must satisfy the
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Bloch equation (Feynman, 1972):

− ∂

∂β
ρλ(ξ, ξ

′; β) = Hλ(ξ )ρλ(ξ, ξ
′; β), (14)

with the bounded condition

lim
β→0;λ→0

ρλ(ξ, ξ
′; β) = δ(ξ − ξ ′). (15)

For the BDS-HamiltonianHλ, the Bloch equation is

− ∂

∂β
ρλ(ξ, ξ

′; β) =
(
−1

2
a1
∂2

∂ξ2
+ 1

2
a2ξ

2+ λ√
2

a3
∂

∂ξ
+ λ√

2
a4ξ

)
× ρλ(ξ, ξ ′; β). (16)

This equation can be simplified by performing the following change of variables:

f = β√a1a2, (17)

η = 4

√
a2

a1
ξ + λ√

2
|q|. (18)

Therfore, Eq. (16) becomes

− ∂

∂ f
ρλ(η, η

′; f ) =
(
−1

2

∂2

∂η2
+ 1

2
η2+ λ√

2
|q| ∂
∂η
− λ

2

4
|q|2

)
ρλ(η, η

′; f ).

(19)
In Eqs. (18) and (19), we have introduced the notation

|q| = a3√
a1a2

4

√
a2

a1
= a3

a1

4

√
a1

a2
. (20)

Let us try to solve this differential equation with partial derivatives by using
Feynman’s method for the Bloch equation of the usual HO (Feynman, 1972), that
is, by requiring the solution of the following kind:

ρλ(η, η
′; f ) = exp[−A( f )η2+ B( f )η + C( f )]. (21)

After straighforward calculations (see the Appendix), the solution is

ρλ(η, η
′; f ) = 1√

sinhf
exp

[
− 1

2
cothf (η2+ C1)

+ 1

sinhf
C1η + λ√

2
|q|η + C0

]
. (22)

Because the density matrix is a symmetrical function in the pair of variables
η andη′ and that, at the harmonic limit (λ→ 0), this density matrix must tend
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to the corresponding density matrix of the usual HO, the integration constantsC1

andC0 must be particularized to the following values:

C1 = η′; C0 = λ√
2
|q|η′ + ln

(
1√
2π

4

√
a2

a1

)
. (23)

Therefore, the final expression of theH O(λ)-density matrix, in terms of the
variableη, is

ρλ(η, η
′; β) = 1√

2π
4

√
a2

a1

1√
sinhβ

√
a1a2

exp

{
−1

2

1

sinhβ
√

a1a2
[(η2+ η′2)

coshβ
√

a1a2− 2ηη′] + λ√
2

a3

a1

4

√
a1

a2
(η + η′)

}
(24)

The harmonic limit leads to the following expression for the density matrix
of the usual harmonic oscillator HO (Feynman, 1972):

lim
H O
ρλ(η, η

′;β) ≡ lim
λ→0

ρλ(η, η
′;β) = ρλ(ξ, ξ ′;β)

= 1√
2π

4

√
a2

a1

1√
sinhβ

√
a1a2

(25)

× exp

{
−1

2

1

sinhβ
√

a1a2
[(ξ2+ ξ ′2) coshβ

√
a1a2− 2ξξ ′]

}
.

Like the density matrix of the usual HO, the density matrix for theH O(λ)
evidently satisfies the bounded condition (15)

lim
β→0;λ→0

ρλ(η, η
′; β) = lim

β→0

1√
π

√
1

2βa1
exp

[
− 1

2βa1
(ξ − ξ ′)2

]
≡ δ(ξ − ξ ′).

(26)

Here we have used the “gaussian” representation of the Diracδ-distribution

δ(ξ − ξ ′) = lim
γ→0

1√
π

1

γ
exp

[
− 1

γ 2
(ξ − ξ ′)2

]
. (27)

Using Table I, we can easily come back on the density matrix expressions for
the position{x} and momentum{p}-representations.

3. QUANTUM-STATISTICAL OR THERMAL AVERAGES

For calculating the quantum-statistical or thermal averages for an operator
A(ξ ), which characterize the quantum-statistical system, that is, for calculating the
average values in the mixed state described by the corresponding density matrix, it
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is necessary to normalize the density matrixρλ(ξ, ξ ′; β). The trace of the density
matrix is the partition functionZλ(β):∫ +∞

−∞
ρλ(ξ, ξ ;β) dξ = Zλ(β). (28)

The partition functionZλ(β) is very important because the quantum-statistical
averages of all physical observables of the system are expressed by using this
function. In addition, as we will see, the calculation of the entropy reduces to the
problem of finding the explicit form of the density matrix.

The integrals in Eq. (28) and in the following Equations are of the “gaussian”
kind (Gradshteyn and Ryzhik, 1980):∫ +∞

−∞
xne−bx2+sx dx =

√
π

b

∂n

∂sn
exp

(
s2

4b

)
. (29)

After straighforward calculations, the partition functionZλ(β) is given as

Zλ(β) = Z(0)(β) exp

(
λ2

2
|q|2 coth

β

2

√
a1a2

)
, (30)

with the harmonic limit:

lim
λ→0

Zλ(β) = Z(0)(β) = 1

2 sinhβ2
√

a1a2

. (31)

Therefore, the quantum-statistical average of the operatorA(ξ ) must be cal-
culated in the following manner:

〈A〉 = 1

Zλ(β)

∫ +∞
−∞

A(ξ ′)ρλ(ξ, ξ ′; β)|ξ=ξ ′ dξ, (32)

where the following successive operations must be performed: (1) The operatorA
acts on the density functionρλ(ξ, ξ ′; β), acting only on the primed variables, that
is, ξ ′; (2) the prime is deleted; (3) the integration is performed over the variables
without the prime.

When the operatorA has a multiplicative character, diagonal elements of the
density matrix will appear directly in the last formula.

So, thenth order moments of the variableξ are defined as the quantum-
statistical averages of thenth power of the variableξ :

〈ξn〉 = 1

Zλ(β)

∫ +∞
−∞

ξnρλ(ξ, ξ ;β) dξ

=
(

4

√
a1

a2

)n+1 n∑
k=0

(−1)n−k

(
n

k

)(
λ√
2
|q|
)n−k

〈ηk〉, (33)

where, for simplicity reasons, we have introduced thek-order moment of the
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variableη:

〈ηk〉 = 1

Zλ(β)

∫ +∞
−∞

ηkρλ(η, η;β) dη

= 1√
2π

4

√
a2

a1

1√
sinhβ

√
a1a2

1

Zλ(β)

×
∫ +∞
−∞

ηk exp

(
− tanh

β

2

√
a1a2η

2+ sη

)
dη. (34)

Here, we have used the notation

s= 2
λ√
2
|q|. (35)

After straighforward calculations, we obtain

〈ηk〉 = 4

√
a2

a1
exp

(
−λ

2

2
|q|2 coth

β

2

√
a1a2

)
∂k

∂sk
exp

(
s2

4
coth

β

2

√
a1a2

)
. (36)

The most important are the first two moments of the variableη:

〈η〉 = 4

√
a2

a1

λ√
2
|q| coth

β

2

√
a1a2, (37)

〈η2〉 = 4

√
a2

a1

(
1

2
coth

β

2

√
a1a2+ λ

2

2
|q|2 coth2β

2

√
a1a2

)
(38)

and, respectively, in the variableξ :

〈ξ〉 = 4

√
a1

a2

λ√
2
|q|

(
coth

β

2

√
a1a2− 1

)
, (39)

〈ξ2〉 =
(√

a1

a2

)[
1

2
coth

β

2

√
a1a2+

(
λ√
2
|q|
)2 (

coth
β

2

√
a1a2− 1

)2
]
. (40)

Because the position and momentum operators are canonical operators, char-
acterized by nonzero commutation relation (8), it is interesting to calculate, besides
thenth order moments of variableξ , the average of thenth order derivatives with
respect to this variable also:〈

∂n

∂ξn

〉
= 1

Zλ(β)

∫ +∞
−∞

∂n

∂ξ ′n
ρλ(ξ, ξ

′; β)|ξ ′=ξ dξ

=
(

4

√
a2

a1

)n−1 1

Zλ(β)

∫ +∞
−∞

∂n

∂η′n
ρλ(η, η

′; β)|η′=η dη, (41)
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where we must respect the succesive operations as previously indicated for Eq. (32).
The averages of the first two derivatives are〈

∂

∂ξ

〉
= 0, (42)

〈
∂2

∂ξ2

〉
= −1

2

√
a2

a1
coth

β

2

√
a1a2. (43)

At this point, it is useful to observe that in the previous averages we dealt with
the double average: the quantum-mechanical and the quantum-statistical, which
cannot be separated. Consequently, it is easy to extend a series of considerations
that refer to the quantum averages to thermal averages (Popov, 1998).

For a pair of noncommuting quantum observables (Hermitian operators in the
Hilbert space)AandB, the uncertainty principle is given in the form of Robertson’s
relation (Robertson, 1930):

(1A)2(1B)2 ≥ 1

4

(〈C〉2+ 4σ 2
AB

)
, C = −i [ A, B], (44)

where the variance of the observableA is

(1A)2 = 〈A2〉 − 〈A〉2 (45)

and similarly for the observableB.
The covariance of the observablesA andB is defined as

σAB = 1

2
〈AB+ B A〉 − 〈A〉〈B〉. (46)

When this covariance vanishes,σAB = 0, the Robertson uncertainty relation re-
duces to the Heisenberg uncertainty relation, that is, to the following uncertainty
product:

(1A)2(1B)2 ≥ 1

4
〈C〉2. (47)

An interesting historical examination of the uncertainty relations problem was
made by Majernik and Richterek (1997) (see also the references therein). Even if
in the uncertainty relations the averages can be performed for a pure or a mixed
state, Majernik and Richterek (1997) in their works preferred the pure states for
the averages.

Formerly, we have extended the uncertainty relations to the mixed states,
particularly for the thermal states, for the few exactly solvable potentials (Popov,
1999). Let us now apply these results also to the case of the BDS-Hamiltonian.

So, with the help of the above moments, the variance of the variableξ for the
thermal states of theH O(λ) is

1ξ =
√
〈ξ2〉 − 〈ξ〉2. (48)
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Finally, we obtain

(1ξ )2 =
√

a1

a2

1

2
coth

β

2

√
a1a2; 1ξ =

√
〈ξ2〉(0). (49)

It is easy to observe that this thermal variance does not depend on the param-
eterλ, as the eigenvalues of theH O(λ). So, the variance of theH O(λ) is just the
square root of the 2-order moment of the usual HO.

By particularizing the expression of the thermal variance for the variableξ ,
according to Table I, we obtain the corresponding variances for the positionx and
momentump-variables:

(1x)2 = 1

2

h

mω
coth

β

2
hω; (1p)2 = 1

2
mhω coth

β

2
hω, (50)

so that the uncertainty product for the thermal averages is

1x1p = h

2
coth

β

2
hω ≥ h

2
. (51)

It is evident that the uncertainty product for the thermal states is greater than
the constanth/2 and, of course, is dependent on the temperatureT (throught the
variableβ).

Moreover, the variance of the momentump can be obtained by using the
averages (42) and (43):

(1p)2 = 〈p2〉 − 〈p〉2 = −h2

〈
∂2

∂x2

〉
+ i h

〈
∂

∂x

〉
= 1

2
mhω coth

β

2
hω. (52)

This is same as the result obtained for the usual HO by extending the usual uncer-
tainty product to the mixed states (Popov, 1999).

4. ENTROPIC UNCERTAINTY RELATIONS

In the past, there was a considerable interest in evaluating, in a nontraditional
manner, the various measures for uncertainty of two noncommuting observables
A andB. Because the most natural measure of uncertainty in the result of a mea-
surement is the entropy, the entropic uncertainty relations were formulated, which
are an inequality of the form (Majernik and Opatrn´y, 1996; Yáñezet al., 1994):

S(A) + S(B) ≥ SAB, (53)

whereSAB is a positive constant, which represent the lower bound of the left-hand
side.

For a certain physical pure state|v〉 of the system, in the{ξ}-representation,
the physical entropy is defined as (Y´añezet al., 1994)

S(ξ )
v = −kB

∫
ρv(ξ ) lnρv(ξ ) dξ = −kB

∫
|9v(ξ )|2 ln |9v(ξ )|2 dξ, (54)

which depend, of course, on the quantum numberv.
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We extend this definition to the mixed states, particularly, to the thermal states
of H O(λ). For these kind of states, which are described by the density matrix (24),
the averages must be calculated by using Eq. (32) and so, the entropy is

S(ξ )
λ (β) = −kB

〈
lnρ(N)

λ

〉
= −kB

∫ +∞
−∞

[
lnρ(N)

λ

]
ρ

(N)
λ (ξ, ξ ′; β)|ξ ′=ξ dξ. (55)

As we see, the entropy is defined as the thermal average of the logarithm of
the normalized canonical operator:

ρ
(N)
λ =

1

Zλ(β)
ρλ = 1

Zλ(β)
exp[−βHλ(ξ )], (56)

which leads to the expression

S(ξ )
λ (β) = kB lnZλ(β)+ kBβ

1

Zλ(β)

∫ +∞
−∞

Hλ(ξ )ρ(N)
λ (ξ, ξ ′; β)|ξ ′=ξ dξ. (57)

This integral can be calculated in much simpler way if we use the Bloch
equation (14). After straighforward calculations, the left-hand side of this equation
leads to:

− ∂

∂β
ρλ(ξ, ξ

′; β)|ξ ′=ξ = −√a1a2
∂

∂ f
ρλ(η, η

′; f )|η′=η
(58)

= 1

2

√
a1a2

(
cothf + 1

cosh2 f
2

η2

)
ρλ(η, η; f ).

By replacing the integrand of Eq. (57) by the above expression, we obtain

S(ξ )
λ (β) = kB lnZλ(β)+ kB

β

2

√
a1a2

(
cothf + 1

cosh2 β2
√

a1a2

4

√
a1

a2
〈η2〉

)
. (59)

Using the expression (38) of the second moment of variableη and performing
some simple trigonometrical transformations, we obtain the final expression for
the entropy of the thermal states:

S(ξ )
λ (β) = kB

(
β

2

√
a1a2 coth

β

2

√
a1a2− ln2 sinh

β

2

√
a1a2

)

+ kB
λ2

2
|q|2

(
coth

β

2

√
a1a2+ β

2

√
a1a2

1

sinh2 β
2

√
a1a2

)
. (60)

At the harmonic limit (λ→ 0), this entropy leads to the corresponding ex-
pression of the harmonic oscillator (Feynman, 1972):

lim
λ→0

S(ξ )
λ (β) = kB

(
β

2

√
a1a2 coth

β

2

√
a1a2− ln2 sinh

β

2

√
a1a2

)
≡ S(0)(β). (61)
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According to Table I, the parameterq has the same value, that is,|q|2 = 1,
for both the representations{x} and{p}. We thus obtain that the entropies of the
thermal states are equal for both variablesx andp, that is, are independent on the
representation

S(x)
λ (β) = S(p)

λ (β) = kB

(
β

hω

2
cothβ

hω

2
− ln2 sinhβ

hω

2

)

+ kB
λ2

2

(
cothβ

hω

2
+ β hω

2

1

sinhβ hω
2

)
. (62)

So, the searched sum of the entropies of two noncommuting observables,
positionx and momentump, for theH O(λ) is

S(x)
λ (β)+ S(p)

λ (β) = 2S(0)(β)+ kBλ
2

(
cothβ

hω

2
+ β hω

2

1

sinhβ hω
2

)
. (63)

Because the parameterλ is positive for a certain temperatureT , that is, for
a certainβ, the lower bound of this sum for theHO(λ) is just the double of the
entropy of the usualHO, so that

S(x)
λ (β)+ S(p)

λ (β) ≥ 2S(0)(β). (64)

As expected, the right-hand side of this expression depends on the temperature
T through the variableβ.

Moreover, we recall that the absolute lower bound of this expression must be
searched forT → 0 (or forβ →∞):

lim
β→∞

S(0)(β) = 0, (65)

that is, this result is in accordance with the Nernst theorem (the third law of
thermodynamics).

5. CONCLUSIONS

It is well known that the usual or traditional uncertainty relations are available
not only for pure states in which the system was prepared, but also for mixed states,
that is, for the superposition of pure states. But in most of the papers relating to
uncertainty relations the attention is directed to pure states.

On the other hand, in the past years, the most natural measure of the uncer-
tainty in the result of a measurement (or preparation) of a single observable is
considered to be the entropy, motivating the so-called entropic uncertainty rela-
tions (Beckers and Debergh, 1989; Majernik and Richterek, 1997; Popov, 1999;
Yáñezet al., 1994) also formulated only for the pure states.
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In the present paper, we have extended both kind of uncertainty relations to the
mixed states, particularly to the thermal states. As a quantum-mechanical model,
we considered a quantum ideal gas of the harmonic oscillators with the BDS-
Hamiltonian, depending on a real parameterλ, in thermodynamical equilibrium
with the reservoir at the temperatureT , that is, in the conditions of the quantum-
canonical distributions. Due to the symmetry in the structure of this Hamiltonian,
we have constructed the corresponding density matrix in a common way, in both
representations, the position{x} and momentum{p}.

For the mixed states, both the uncertainty product and the entropic uncertainty
relation for these two canonical variables have a lower bound, which is dependent
on the temperatureT . This fact was expected, because, for the pure states, the
lower bound was a constant. For the case of theHO(λ), the lower bound for the
mixed states (forλ = 0) is just the lower bound, which corresponds to the usual
harmonic one-dimensional oscillator. The entropies calculated for two canonical
observablesx andp are equal, but the absolutely lower bound is, of course, equal to
zero in accordance with the Nernst theorem. We can say that the HO(λ) is superior,
from the entropy value, confronted by the usualHO.

From this point of view, that is, from the point of view of the right-hand side
value of entropic uncertainty relations, these relations can be considered as a good
criterion for the anharmonic oscillators classification.

6. APPENDIX

In order to solve Eq. (19), we impose that solution (21) must satisfy this
equation and we check the expressions of the functionsA( f ), B( f ), andC( f ).
We obtain the following equation:

A′η2− B′η − C′ = A− 2A2η2+ 2ABη − 1

2
B2+ 1

2
η2+ λ√

2
|q|B

− λ√
2

2|q|Aη − λ
2

4
|q|2, (66)

where primes indicate derivatives of the corresponding functions with respect to
the variablef .

By identifiyng the coefficients of the powers of the variableη, we obtain three
new equations:

A′ = 1

2
− 2A2, (67)

B′ = λ√
2

2|q|A− 2AB, (68)
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C′ = 1

2
B2− λ√

2
|q|B− A+ λ

2

4
|q|2. (69)

By integrating the first equation (67) and puttingf0 = 0, we obtain

A = 1

2
cothf. (70)

The second equation (68) can be written as follows:

d B

d f
+ cothf B = λ√

2
|q| cothf, (71)

and its solution can be determined (see, e.g., Piskounov, 1972) by using the fol-
lowing notations:

P( f ) = cothf ; µ( f ) = exp
∫

P( f ) df; Q( f ) = λ√
2
|q| cothf, (72)

B( f ) = 1

µ( f )

[∫
Q( f )µ( f ) d f + C1

]
. (73)

So, the functionB( f ) becomes

B( f ) = λ√
2
|q| + C1

1

sinhf
. (74)

By subsituting the expressions forA( f ) andB( f ) in the third equation (69),
we obtain an ordinary differential equation for the functionC( f ):

C( f ) = C0− 1

2
C2

1 cothf − 1

2
ln sinhf. (75)

Finally, the expression for the density matrix is

ρ = 1√
sinhf

exp

[
C0− 1

2
cothf

(
η2+ C2

1

)+ 1

sinhf
C1η + λ√

2
|q|η

]
. (76)
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Beckers, J., Debergh, N., and Szafraniec, F. H. (1998).Physics Letters A243, 256.
Feynman, R. P. (1972).Statistical Mechanics, Benjamin, New York.
Glauber, J. R. (1963).Physical Review Letters10, 277; (1963).Physical Review130, 2529.
Gradshteyn, I. S. and Ryzhik, I. M. (1980).Table of Integrals, Series and Products, Academic Press,

London, New York.
Klauder, J. R. (1963).Journal of Mathematical Physics4, 1055, 1058.
Klauder, J. R. and Skagerstam, B. S. (1985).Coherent States, Applications in Physics and Mathematical

Physics, World Scientific, Singapore.
Majernik, V. and Opatrn´y, T. (1996).Journal of Physics A: Mathematical and General29, 2187.



P1: VENDOR

International Journal of Theoretical Physics [ijtp] PP072-296075 February 7, 2001 20:15 Style file version Nov. 19th, 1999

874 Popov

Majernik, V. and Richterek, L. (1997).European Journal of Physics18, 1.
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