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Abstract

In the paper we have investigated some properties of the Barut—Giraradello
coherent states (BGCS) (the eigenstates of the SU (1, 1) lowering generator K )
for the Hamiltonian of the pseudoharmonic oscillator (PHO). By using these
states, the diagonal P-representation of the density operator is constructed as
a new result for this potential. In addition, we have calculated some thermal
expectation valuesfor the quantum canonical gasof the PHOs. Thecalculations
using the BGCS representation seem to be much simpler and easier to program
than the corresponding calculations in other representations (e.g. the position
representation). At the end of the paper the time dependence of these statesis
presented.

PACS numbers; 0365C, 3310C, 4250A

1. Introduction

It is well known that real molecular vibrations are anharmonic, but due to its mathematical

advantages the harmonic oscillator (HO) model isused. An anharmonic potential, which also

permits an exact mathematical treatment, is the so-called * pseudoharmonic oscillator’ (PHO)

potential. This potential was pointed out in[1], but recently interest in it has reappeared [2-8].
The effective potential of the PHO is

me? , (1t 1o\> B2 1
Vi)y=—r18(———) +=3J+D) 5 1
10 =T (5 ) a0 G @
where rq is the equilibrium distance between the nuclei of the diatomic molecule, and
J =0,1, 2,... isthe rotational quantum number. This potential also admits the exact

analytical solution of the rovibrational Schrodinger equation, being in a certain sense an
intermediate potential between the HO potential (an ideal potential) and the anharmonic
potentials (the more realistic potentials). A comparative analysis of three-dimensional HO
potentials (HO-3D potentias) and the PHO is performed in [3].
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2 D Popov

Using Molski's techniques [9] (for the Morse oscillator) we have rewritten the PHO
effective potentia as follows[8]:

Mw? oo\ me?
Vi) = Tr? (E_TJ> +T(r§—r§) 2
where the changed equilibrium distance is

SECI|

and the new rotational parameter, «, which appearsis defined as

1\? Mw \2 :
“=[<J+§>+(§ﬁ%)}- “)
Using thisprocedure, therotational case (J # 0) isimplicitly reduced to the non-rotational
(J = 0) one and both cases can be examined together.
The corresponding rovibrational Schrodinger equation for the reduced radial function
us(ryis

R &2 me? roorg)’
—%F‘FT@( —i)}uﬁ(r)Z(EuJ—Eg)Uﬁ(r) %)

ry T
where v is the vibrational quantum number. In the right-hand side the effective rotational
energy appears:

H, (Nus(r) = {

2

mow
Eat = TU? —rd). (6)

It isevident that, from amathematical point of view, equation (5) issimilar to the reduced
radial Schrodinger equation for the isotropic HO-3D. This similarity will be of further usein
the construction of the corresponding lowering and raising operators for the PHO.

The HO-3D can be considered as a limit oscillator of the PHO. This limit is called the
harmonic limit of the PHO and for a certain physical observable A is defined as (see [6])

lim A=limA= A° (7
w — 2wo HO
ro—0
a— J+ %
where the quantitieswithout any index correspondsto the PHO, while the same quantitieswith

theindex (0) corresponds to the HO-3D (with frequency wo).
The radial eigenfunctions and eigenval ues have been calculated in [2]:

) 1 B! B B2 ,\. ., (B?,
uv(r)=rRuJ(r)=E[m:| (Br) 2exp<—7r )Lv <7r ) (8)
1 hw mw?
EUJ =how (U"‘E) +70l— Trg (9)
where we have used the notation
Mw %
8= (F)" (10)

HereI"(x) isEuler'sgammafunction and L¢ (x) isthe generalized L aguerre’s polynomial .
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The aim of this paper isto construct the coherent states (CS) of the PHO, particularly the
Barut—Girardello coherent states (BGCS). These stateswill be obtained asthe eigenstates of the
lowering generator K_. BGCSare of specia importance dueto their remarkabl e mathematical
properties and interesting physical applications, especially in quantum optics.

The plan of the paper is the following: we start in section 2 with the SU (1, 1) algebraic
treatment of the PHO, from which we discover the SU (1, 1) generators for this oscillator
potential. We have inserted a brief review of the properties which will be useful for the
ensuing calculations. In section 3 we construct the CS for the PHO, as the eigenstates of the
SU (1, 1)-generator K_. These states are, as we had expected, just the BGCS. By using these
states we have calculated, in section 4, some expectation values in the BGCS representation,
whilein section 5 we have examined the statistical properties of aquantum gas of PHOswhich
obeys the quantum canonical distribution. The discovery of the diagonal P-representation of
the density operator, which isthe main result of this paper, allows usto calculate the thermal
expectation values of some physical observable concerning the PHO quantum canonical gas:
the internal energy, the entropy and the molar heat capacity. All these formulae so obtained
lead, in the harmonic limit, to the corresponding formulae for the HO-3D, because the HO-3D
is a particular case of the PHO (in the conditions of the harmonic limit). The last section
(section 6) is devoted to the time dependence of the BGCS. A brief discussion concludes the

paper.

2. SU(1, 1) algebraic treatment of the PHO

By using the substitution w = 2wy, let us rewrite equation (5):

R & meoi, moi,
[_%W-'-Tr +TrJr2 ﬁw0(2v+a+1)]u (r)y=20 (11)

1
Passing to the dimensionless variable y = (M22)2r = +/2Br allows us to rewrite this

equation as follows:

1d® 1, 1/, 1\1 .
a2 e (o E) o @rerfuo =0 e
where appears the dimensionless reduced Hamiltonian H{" of the PHO:
1 mw3 1d> 1, 1 1\ 1
HeD(y)y = —— [Hy(y) + —2r2 | = —Z— +Zy?+ = [a? = = 13
o (Y) ﬁwo |: (y) ﬁ r0:| 2dy2 2y 2 (Ol ) y2 ( )

Following the procedure from [10] for HO-3D, we define the generators in a similar
manner:

= 1y2 (14)
5( Ydy 2) 19

1d® 1 1\ 1
W3:—§d—y2+§<a2——> v (16)

with the commutators
(Wi, W] =W, [Wa, W] =iW;3 [Wi, W3] = 2iW,. (17)
We define the operators K (i = 1, 2, 3) asfollows:

1 if 1 1/, 1\1 1,
Kl_é(wa_wl)_i[_éd_)/z+§<a_Z)F_Ey} (18)
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i d 1
Ky =W, = 5 <YE + 5) (19)
1 1T 1 1/, 1\1 1,1 1
K3_§(W3+Wl)_§[_§d_y2+§<a_Z>F+§y}_§H“ (y) (20)

which have the characteristic commutation relation for the Lie algebra corresponding to the
SU (1, 1) group:

[K1, Ko] = —iK3 [K2, K3] =Ky [Ks, Ki] =iKa. (21)

The SU (1, 1) group is the most elementary non-compact non-Abelian simple Lie group.
It is customary to use the raising and lowering generators of this group:

Ki=K;£iK; (22)

which satisfy the following commutation relations:
[Ks, Ki] = £K4 [K_, Ki] =2Ks. (23)
The Casimir operator K2 for any irreducible representation isthe identity times anumber:
K?2=K2- K- K:=kk—-1) (24)
so, arepresentation of SU (1, 1) isdetermined by asingle real number k (called the Bargmann

index).

Here, we are only interested in the unitary irreducible representations known as positive
discrete series, wherek > 0. The corresponding state is spanned by the complete orthonormal
basis of the number state |v, k) (wherev =0, 1, 2, ..., oo isthevibrational quantum number)
of the PHO Hilbert space:

(v, K[V, K) = 8y > v k(v k| =1 (25)
v=0
The discrete representations of the SU (1, 1) group are given by
K2v, k) = k(k — 1)|v, k) (26)
Kilv,K) =+/(v+1(v+2K)|v+1 k) (27)
K_|v, k) = Vv +2k—DJv—1,k). (28)

Let us now apply these general considerations concerning the SU (1, 1) group generators
to our interesting problem, i.e. to the PHO operators (22) and (20). The PHO realization of
the raising and lowering operators K. is

1 1[ 1d® 1 1N1 1 1/ d 1
Ki=ZWa—W)=Z|-—+Z(?-2)S-Zy? |+ (y—+2]). 29
£ =5 We = W) 2[2dy2 2(“ 4)y2 2y} Z(ydy 2) (29)

In order to eliminate the second-order derivative, we use the rovibrational Schrodinger

equation (12) and we obtain

1 d 1
Ki_§<iyd_yi§_y +2U+C¥+1). (30)
The dimensionless radial reduced eigenfunction ug (y) (see, equation (8)) is
Ui (y) = Cr2: Dy 2 exp (= 3y?)LY(Y?) (30)

where we used the following notation:

1
1 B3u! z
Ch==|00——"7"-—| . 32

v B[Z“F(v+oz+l)i| (32)
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Using the relation between the generalized Laguerre polynomials[11]:

x% LS(x) =vlLy(X) — (v +a)L)_;(xX) = (w+ LS, ;(X) — (v+a+1— X)L (X) (33)

we can easily demonstrate the equations

KeUu%(y) = V(v +1)(v +a + Dus,,(y) (34)
K_ug(y) = vV +ojug_;(y). (35)

Comparing these equationswith the equations (27) and (28) we obtain thefollowing useful
connection:

a=2k-1 (36)

i.e. the rotational parameter « plays the role of the Bargmann index. Later in this paper, we
will use the k-index instead of the a-index.
For the vibrational ground state (v = 0) we can demonstrate that the equation

K_ug(y) =0 (37)

isalso satisfied.
The properties of the K. and K3 generators allow us to construct the CS corresponding
to the PHO.

3. CSof PHO

Following the Barut and Girardello procedure [12], let us construct the eigenstates of the
lowering generator K _:

K_|z, k) = z|z, k) (38)
where z is an arbitrary complex number.

One can represent the eigenstates |z, k) as the superposition of the complete orthonormal
basis |v, k) of the PHO Hilbert space:

00

. k) = (v, K|z K)[v, k). (39)

v=0
Let the operator K_ act on equation (39). Then, using equations (38) and (28) and the
orthonormality relation (25), we have the following result:

z
(v, k|Z, k) = m(l) — 1, k|Z, k) (40)

which, after the recurrence procedure, becomes

L [ T(2k)
(v,K|z, k) = Z —U!F(v+2k)<o’ k|z, k). (41)

By normalizing to unity the states |z, k) and using the relation (see [13])

) A 7 N (42)

LyTw+v+D) X

where |, (x) isthe modified Bessel function of order v, we have

0.Klz k 22 3
) ) = T Al Al 4
0Kz K = ezren (43)
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i.e. finally, the eigenstates |z, k) become

2 L.k (44)
2 1(2|z|) Tk

These states are, evidently, the BGCS[12, 14-16].

Consequently, the CS which corresponds to the PHO are just the BGCS.

Itisdemonstrated (see, e.g. [12] or [14]) that these states are normalized but not orthogonal
and that the following resolution of the identity holds:

/du (z, K|z k) (z, k=1 (45)

with the measure

du (z, k) = ; Ka_1(21Z)) lak—1(2]2]) d?z d’z=d(Rez)d(Imz). (46)
The function K, (x) isthe v-order modified Bessel function of the second kind.
Here and below, all the integrals are performed over the whole complex z plane, where
z=rexp(ip) r € [0, c0) ¢ €10, 2r]. 47
The resolution of the identity is easy to demonstrate by using the following integral [11]:

o . 1+u+v 1+pu—v
Iz — opu—1lo—p-1
/O dx x*K,(ax) = 2*7"a F( > )r( > > (48)
[Re(u+1+v) >0, Rea>0].

Aswe see, the BGCS are not orthogonal:

(0, Kz, k) = lx-1(2vor2) (49)

Vix1@lo)lx-1(2]2))
where o is also an arbitrary complex number.

4. Expectation values

Using equation (44), the expectation value of aphysical observable A, which characterizesthe
PHO, with respect to the BGCS |z, k) is easy to obtain:
|Z|2k—l o0 (Z*)n v
ZKIAZK) = (A= ——— n, kK|Ajv, k). 50
(2. KAz k) = (A lk_1(2|2]) Jv!F(v+2k)n!F(n+2k)< [Al. k) (50)
In order to calculate different expectation valuesit is useful to evaluate the sum S,, with
n=0,1,2,...(seetheappendix):

(x%)" o
= ZU'F(v+v+l) ' (51)

v,n=0

First, let us calculate the expectation values of the operators K; (i = 1, 2, 3). Using the
above equation, it is easy to prove that

(Ko)k=12 (Ki)zk =2 (52)

(K1)zk = 3(K_ + Ky)zx = 3(z+2") = Rez (53)
i i o

<K2>z,k—§<K7— Ki)zk = é(z—z)_—lmz. (54)
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For the generator K3 and its second power K2, by applying equation (50) and using
equation (20), we obtain

|z|21 l2¢(2]2])
Ka)pp = —— kQ) = |zl ——"" +k 55
< 3> K |2k—l(2|2|) (Sl+ S)) |Z| |2k,1(2|2|) ¥ ( )
|zt I (2l2])
K, y= — kS + k%) = k2 + (2k + 1)|z| ————
(R3)zx |2k—1(2|2|)(SZ+ S+KS) * ek )|Z||2k—1(2|2|)
2 l2k+1(2]2])
“21lelf) 56
@) (50)

where we used the expressions for &, S, and S, from the appendix.
It iswell known that the number operator N is defined as the operator which diagonalize
the basis for the number states:

N|v, k) = v|v, k). (57

Then, the expectation values for the number operator and its second power are
12k (2]2])
< >z,k ( 3 )z,k |Z||2k71(2|z|) (58)
12 (2]2]) l2k+1(2]2])

N2), i = (K2 — 2kN — k), = |z] —= +1z/2 . 59

Wi = (8 = ey T e Y
Theintensity correlation function, defined asin [14], is

@) = (N?)zk — (N)zk _ 1@z 2 (2]2)) (60)

(N)2, [1x(212))]?

For two limiting cases of the |z| variable, i.e. for |z] « 1 and |z| > 1, using the well
known approximations for the modified Bessel function 1, (x) (see[11])

X\ . e* 1
l,(X) >~ oD (§> respectively I, (X) = T [1+ (0] <;>} (61)
we obtain for the intensity correlation function the following expressions:
2k .
95 ~ e 1 respectively g ~ 1. (62)

So, for small values of |z|, the intensity correlation function is smaller than unity, for all k
values. The corresponding BG states have sub-Poissonian statistics, while for large |z|, these
states tend to have Poissonian statistics [14].

5. Statistical properties

In this section we will carry out adetailed discussion on the statistical properties of the BGCS
for the PHO. We consider a quantum gas of the PHOs in thermodynamic equilibrium with the
reservoir (thethermostat) at temperature T, which obeysthe quantum canonical distribution[6].
The corresponding normalized density operator for a fixed rotational quantum number J (or,
equivalently, for afixed number k) isthen
1 o0
py=pc=o ) e B K. i (63)
k v=0

where Z; = Zy isthe normalization constant, i.e. the partition function for a certain rotational
state J.
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The diagonal elements of the density operator in the BGCS representation are

(@ Kipalz.K) = (g = 2§ e (=) (64)
PONE = P = 7 122 WIT (v + 2K)
where we have used equations (44) and (25).
Finally, using equations (9) and (42) we get
1 b mozr2) 2ko1(2]Z|eFeo)
z, k| pklz, k) = ——e PMeo—magry) ZC 70 7 65
(z, K| pklz, k) Z L 1(212) (65)
By normalizing the density operator to unity, i.e.
Trp = [ de@ iz Kipdz ) =1 (66)
and using an integral of the following kind [11]:
00 DT (L = 2a+ 2p+ 30)r(d = 3o — L+ 1v)
—A _ 2 2 2 2 2 2 2 2
/o dx XK, (@ax)l,(bx) = P10 () + Da
x F }_}A+} +} }_})\_} +}~ +1b_2
2 2" ot T T TN T g
[Re(v+1—-A1+pu)>0, a=>bhb (67)
we obtain the expression for the partition function
Zi = — B (Awo—mawdr2)—Bhwo(2k—1) F(Zk, 1: 2k; e—2ﬁﬁwo). (68)
The degenerate hypergeometric function has the property (see[17])
F(B,a; B;X) = F(a, B; ;%) = (L—x) (69)
and, finally, the partition function is
2.2 1
7. — eﬂmworo—ﬁﬁwo(zk—l) . 70
K 2sinh Bhwo (79

Thisis, of course, the same expression that was obtained in [8] (equation (41)), by using
the trace of the PHO density matrix in the position representation.
Consequently, the diagonal elements of the density matrix (65) may be written as

 ok_1(2|z|eFheo)

z k| |z, k) = 2e’M0%~2) gph Bhay —————— = 71

(z, K| pk|z, k) Bhao I (212D (71)

Let us now perform the diagonal expansion of the density operator px in the BGCS:
o= [ du @l P@Iz K 2K. (72)

For the Glauber CS |«) of the HO this expansion is called the Glauber—Sudarshan P-
representation of the density operator [18]. In[14] it is shown that the diagonal representation
of the density operator iswell behaved for describing non-classical states of light.

In order to find the function Py (z) let us begin with the diagonal elements of the density
operator pk in the basis of the number states |v, k):

d2
(v, Klpklv, K) = /272 Kak-1(2]Z]) 1k-1(2]2]) Pc(2) (v, K|z, k)(z, Kk|v, k) (73)

where these diagonal elements are well known (see, equations (63) and (70)):

(v, Klpklv, k) = Zike*ﬂEw = (1 — e 2Mooy[ (fMo)2)y (74)



BGCS of the PHO 9

aswell asthe functions

B |Z|2k71 Zv
WKz =\ @) AT ()

Then, equation (73) becomes

2 d2
(1 — g heoy[ (g Fwoy2]v — T / 272 Kak-1(2|2]) Pu(2)|z| %12 (76)

It is possible to choose intuitively an expression for Py(2), asis performed in [14]. But,
we will choose the function Py (z) to have asimilar expression as the diagona elements of the
density operator in BGCS (see, equation (71)):

Kok-1(2|Z| A)
@ = C @) 70
where the normalization constant C and the constant A must be determined.

Using the integral (see, equation (48)) we easily find the required expression:

Kok—1(2|z|€?Mo)

2) = (e#Mon — 1)l 22 2 78
P@ = ( ) Kaxk-1(2]2]) (78)

Of course, this function satisfies the normalization condition
fdu ZKkPk2=1 (79)

which is not difficult to prove.

In this manner, the diagonal representation of the normalized density operator of the PHO
inBGCSis

Kok_1(2|z|efNeo
p = (€10 — 1)gfMeo®D / due (2,40 2t EZE D) o k. (80)
Kax-1(2]2))

Then the thermal expectation value (the thermal average) of an observable A concerning

the PHO is given by

(Al = Tr(pkA) = / du (2. K) P(2) (2 K Alz, K). (81)

For example, the thermal expectation value of the number operator, N, is

(NJ = / du (2 k) Pe(@ (2 KIN|Z K). (82)

By using the equations (58), (68) and (69) we find that it is independent of the Bargmann
index k:
1

<N>k=mE(N>- (83)

Thisisthe same expression as the Bose-Einstein thermal distribution and, consequently,
the PHO is suitable for association with a boson (e.g. a photon).

Similarly, using equations (59), (68) and (69), the thermal expectation value of the square
of the number operator becomes

2 _ 1 — N2
R &

a so independent of the index k.
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We can now definethe thermal intensity correlation function, which, after the cal culations
above, is aso independent of the index k:

(N?) — (N)
(N)?

The normalized density operator characterizes the quantum gas of PHOs, regarded as the
whole quantum system, is

1
p=3 ;@J +1)Z3p; (86)

(9%« = (g% =2 (85)

where p; = px isthe diagonal representation of the density operator for (see, equation (80))
the rotational state J.
Conseguently, the total thermal expectation value of an observable A is

1
(A =TrAp = EZJ:(zJﬂ)zJ Tr Ap, (87)
where Tr Ap; = (A); = (A) is the expectation value for the rotational state J (see,
equation (81)).
Similarly, the total partition function is
Z=) QI+ effr=3"21+1)Z,. (88)
J v J

Using equation (70), the total partition function becomes
Z =M 707,00 (89)

where we have used the notation

T.(0) =Y (2] + e ™ X = Bhwo (90)
J=0

and, also, the notation for the one-dimensional HO (HO-3D) partition function:
1 1
O _

= = . 91
1 7 2sinhBhwg ~ 2sinhx D
By applying the harmonic limit (7) to equation (90), we obtain
. N _ 1 —x(3+) _ 1 1 X
imT, =T, _2;<J+§)e _Esinhzg(:OShE' (92)
Then, the harmonic limit of the total partition function (89) is
3
. 1 1 3
imZ=——Tyu=(—"—+] =(z° 93
i.e. we obtain the partition function for the HO-3D, as we expected [6].
The interna energy of the whole quantum gas of the Nt PHOs is
1
U = Nit(H) = Nt > > 23+ DZ(H)s (94)

J
and using equations (13), (20) and (55), after integration, we obtain

3
U = —NgtMwiré + Nigthawo [coth Bhwo — x In Ta] (95)
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where Ny is the total number of the PHO in the quantum gas. This result is the same asthe
onein [8], where we have used the position representation of the PHO density matrix.
The entropy of the whole quantum gasis

S= —kg(lnp) =ks (INZ + B(H)) (96)

wherewe havetaken into account that the quantum distribution is canonical and, consequently,
the density operator is proportional to exp(—8H). After the calculations, we obtain the
following expression:

S=Kkg (ﬂﬁa)o coth ,Bﬁa)o —In2sinh ,Bﬁa)o) + kg (In Te — ﬂﬁa)o% InTo,) . (97)

Finally, the molar heat capacity at the constant volume

14U 1, ,8U
== = —TkgBi— 98
v aT v ol B (%8)

Cv
iseasily obtained:

Cv X 2 2 82

— = +x°—(InTy) | 99
R [(sinhx) e (n )} (%9)

In order to verify the above-obtained formulae for the thermal expectation values of the
PHO observables, let us apply the harmonic limit (7) to these formulae. In order to calculate
the harmonic limit we need to calculate the expression

i|nTJ+% — _cotha+Z——_ (100)

X

After straightforward calculations, we successively obtain

] hwg hawo hawg hawo ©

|Hgl U == 3Nt0t7 COthﬂT == 3Nt0t [T + m = 3Ul (101)
i _ ﬁa)o Ha)o . ﬁwo . 0)

limS =3k [/3 <7+m>—ln29nhﬂ7 = 35| (102)

(103)

hoo \2 O
lim —- :3< 7 Zﬁwo) =321
HO R sinh B 50 R
where the notation A<10> represents the corresponding quantity for the HO-1D.
Wewill point out herethat these formul ae are the same asthose derived from the use of the
position representation of the PHO density matrix (see, [6]). This fact demonstrates that the

BGCSfor the PHO are correct, aswell as our obtained formulafor the diagonal representation
of the density operator in these states (80).

6. Thetime dependence of the BGCS

At theend of this paper wewill refer to the time dependence of the BGCS. Using equation (44)
and the radial Schrodinger equation for the PHO,

Hklv.K) = [Rwg(2v + 2K) — madrs]|v, k) (104)
we obtain the time dependence of the BGCS as follows:

1z, k; t) = e FH|Z, k; 0) (105)


Focal
Author: please check v.k or v,k in equation 104
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where we have
m
He = Hy = RooHS™ () = Ao (2Ks —}:_” °r2) (106)
and |z, k; 0) = |z, k).
The action of the operator K3 on the states |z, k; 0) reduces to the action of the same
operator on the number states |v, k) (see, equation (26)). After the calculations we obtain

[ - |zl & (zeZedt)”
|z, k; 1) = exp [ﬁ(mworo —hawg 2k)t] 2 22) 2 m|v, K). (107)
When we use the notation
Z(t) = ze 2ot (108)
we obtain
2.k = | ZOPT s ZOF (109)

lok-1(21z(1)]) 5= VIT (v +2K)
By inserting v = 0 into equation (9), we obtain the energy for the ground vibrational state

Eoy = hwo 2k — mawirs. (110)
In this manner, we obtain the following time dependence of the BGCS:
1z, k; t) = e Bt z(t), k). (112)

The properties and applications of the time-dependent BGCS will be the subject matter
of aforthcoming paper.

7. Conclusion remarks

The PHO is an interesting oscillator model not only for its spectral properties, in good
agreement with the experimental data, but also due to the fact that as the limiting case of
the PHO we obtain the HO-3D. In other words, by applying the harmonic limit to an equation
or formula concerning the PHO (7) we obtain the corresponding eguation or formula for the
HO-3D. Thisis a suitable method for verifying the correctness of the equations or formulae
for the PHO thus obtained, and at the same time for testing new methods, procedures and
concepts.

In this paper we achieved the implementation of the BGCS in the case of the PHO
Hamiltonian. Wehave shown that the symmetry group which correspondsto the pseudoharmon
oscillator Hamiltonian is the SU (1, 1) group. As a consequence, we constructed the CS as
the eigenstates of the group generator K_, i.e. the BGCS for the PHO. By using these CSwe
calculated some expectation valuesin the BGCS representation

Asaresult we obtained that, for small |z|, the corresponding statistic distribution
is sub-Poissonian, whilefor |z| large it is Poissonian.

In section 5 of the paper we examined the statistical properties of the PHO; i.e., we
have constructed the density matrix in the BGCS representation and, especially, its diagonal
representation. In our opinion this seems to be a new result, because, to our knowledge, this
result has not yet appeared in the literature. In order to prove the correctness of the expression
we obtained for the diagonal representation of the density operator p, we calculated some
thermal expectation values (thermal averages) for few observables of concern for the PHO (i.e.
the number operator, internal energy, entropy and Cy/). By applying the harmonic limit (7) to
these averageswe obtained the corresponding averagesfor the HO-3D. It wasto be expected. It
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seemsthat one of the advantages of the use of the BGCS representation consistsin the relative
simplicity of the mathematical calculations, versus the corresponding calculations using the
position representation of the density operator [8].
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Appendix

We consider the general sum

S = Z S (A1)
VIFw+v+1) '
which, in the particular case n = 0, according to equation (42), is
S = 1@, (A2)
On the other hand, from the well known relation [13]
d 1
dx [ | (X)] X lh+1(X) (A.3)
we obtain
1
S = d(XZ) — = —( )m&) X [+1(2X). (A.4)

To calculatethesum S itisuseful towritethe power v? asv? = v(v—1)+v. Consequently,
the result becomes

S = Z k —<x2>2( d )250+x2 s (A5)
v'F(v+v+1) - d(x2) d(x? '

After straightforward cal culation, we obtain

1 1
S = Xos l+1(2X) + x2F|v+z(2x). (A.6)
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