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Abstract
In a previous paper (Popov D 2001 J. Phys. A: Math. Gen. 34 5283) we have
constructed the coherent states (CSs) of the pseudoharmonic oscillator (PHO).
These states are of the Barut–Girardello type. In the present paper, we
have constructed and investigated some properties of the photon-added
Barut–Girardello coherent states (PA-BGCSs) of the PHO. These states are
not orthogonal but are normalized and satisfy a unity resolution relation
(the completeness relation). We have found the analytical form for the
positive weight function in the resolution of unity. By using these states, we
have calculated some expectation values (the first two powers of the number
operator N), which have evinced some non-classical properties. In order to
examine the statistical properties of a PHO gas, which obeys the quantum
canonical distribution, the diagonal P-representation of the density operator
ρ(m) is constructed and the thermal expectation values are calculated. All these
quantities are expressed in terms of Meijer G-functions, and so the PA-BGCSs
are a new field of application for these functions. Also, the time dependence
of the PA-BGCSs is examined. If in the obtained results we put m = 0, we
recover all the results from our previous paper.

PACS numbers: 03.65.C, 03.65.−w, 33.10.C, 42.50.A

1. Introduction

An anharmonic potential, suitable for the treatment of molecular vibrations, which permits
an exact mathematical approach is the pseudoharmonic oscillator (PHO) potential [1–9]. The
effective potential of the PHO is
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where mr is the reduced mass, ω is the angular frequency, r0 is the equilibrium distance
between the nuclei of the diatomic molecule and J = 0, 1, 2, . . . is the rotational quantum
number.

The radial eigenfunctions and eigenvalues have been calculated in [2]:
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v (r) ≡ rRvJ (r) = 1
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where �(x) is Euler’s gamma function, Lα
v (x) is the generalized Laguerre polynomial and ω0

is the angular frequency of the usual three-dimensional harmonic oscillator (HO-3D). At the
harmonic limit (r0 → 0 and ω → 2ω0), the PHO potential leads to the usual HO-3D potential
VJ (r) = 1

2mrω
2
0r

2+ centrifugal term.
In the following we recall the main results of our previous paper [9] (which we call

paper PI) that are useful for the present paper. Passing to the dimensionless variable

y = (
mrω0

h̄

) 1
2 r = Br allows us to rewrite the radial equation as follows[
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where the dimensionless reduced Hamiltonian H(red)
α of the PHO appears
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We have to find the SU(1, 1) group operators [9]

K3 = 1
2H(red)

α (y) (7)

K± = K1 ± iK2 = 1

2
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)
(8)

which satisfy the following commutation relations

[K3,K±] = ±K± [K−,K+] = 2K3. (9)

The Casimir operator K2 for any irreducible representation is the identity times a number

K2 = K2
3 − K2

1 − K2
2 = K2

3 + K3 − K−K+ = k(k − 1). (10)

So, an irreducible representation of SU(1, 1) is determined by a single real number k (called
the Bargmann index).

Here we are only interested in the unitary irreducible representations known as positive
discrete series, where k > 0. The corresponding state is spanned by the complete orthonormal
basis of the number state |v, k〉 (where v = 0, 1, 2, . . . ,∞ is the vibrational quantum number)
of the PHO Hilbert space:

〈v, k|v′, k〉 = δvv′

∞∑
v=0

|v, k〉〈v, k| = 1. (11)
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The number state vectors |v, k〉 and the reduced radial eigenfunctions uα
v (y) satisfy the

same eigenequations with respect to the raising and lowering operators K±

K+|v, k〉 =
√

(v + 1)(v + 2k)|v + 1, k〉 (12)

K−|v, k〉 =
√

v(v + 2k − 1)|v − 1, k〉 (13)

if we make the following identification

α = 2k − 1 (14)

i.e. the rotational parameter α plays the role of the Bargmann index. Further on, we use the k
index instead of the α index.

The Barut–Girardello coherent states (BGCSs) |z, k; 0〉 ≡ |z, k〉 can be constructed as
eigenstates of the lowering generator K− [10]

K−|z, k〉 = z|z, k〉 (15)

where z is an arbitrary complex number.
One can represent the eigenstates |z, k〉 as the superposition of the complete orthonormal

basis |v, k〉 of the PHO Hilbert space

|z, k〉 = C0(|z|)
∞∑

v=0

zv

√
v!�(v + 2k)

|v, k〉 (16)

where we have used the following notation for the normalization constant

C0(|z|) =
√

|z|2k−1

I2k−1(2|z|) . (17)

The purpose of this paper is to construct an important special family of states obtained
by adding photons to a conventional BGCS of the PHO |z, k〉. We call these states the
photon-added Barut–Girardello coherent states (PA-BGCSs) of the PHO.

It should be recalled here that, for the case of the usual harmonic oscillator (HO), the
photon-added coherent states (PACSs) were introduced for the first time by Agarwal and Tara
[11]. Some applications and properties of these states have been the object of extensive studies
recently [12, 13].

The idea of adding photons to the variously-defined coherent states, initiated by Agarwal
and Tara [11], can of course be applied to any type of coherent state.

2. Construction of the PA-BGCS of the PHO

PACSs of the PHO |z, k; m〉 can be obtained by repeated application of the raising operator
K+ (8) to the conventional BGCSs of the PHO |z, k〉 (16)

|z, k; m〉 = Nm(|z|)(K+)
m|z, k〉 (18)

where m is a positive integer being the number of added quanta (or added photons), and
Nm(|z|) is the normalization constant.

Because the commutation relations (9) are not canonical commutation rules of the
Heisenberg type (i.e. rules characteristic of bosons, or particularly photons) for one mode
or multi-modes, in order to avoid any misunderstanding we must note that, in this paper,
the word ‘photon’ in the expression ‘photon-added coherent states’ is used in a non-physical
sense. Maybe, instead of ‘added photons’ it would be better to say ‘added quanta’.
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Using equations (16) and (8), we obtain

(K+)
m|z, k〉 = C0(|z|)

∞∑
v=0

zv

√
ρm(v; k)

|v + m; k〉 (19)

where we have used the notation

ρm(v; k) ≡ [�(v + 1)]2[�(v + 2k)]2

�(v + m + 1)�(v + m + 2k)
. (20)

So, the PA-BGCS becomes

|z, k; m〉 = Cm(|z|)
∞∑

v=0

zv

√
ρm(v; k)

|v + m; k〉 (21)

where

Cm(|z|) ≡ Nm(|z|)C0(|z|) (22)

is a new normalization constant which is calculated below.

2.1. Non-orthogonality

The PA-BGCSs of the PHO must be normalized but not orthogonal

〈σ, k; n|z, k; m〉 = Cn(|σ |)Cm(|z|)
∞∑

v′,v=0

(σ ∗)v
′
zv

√
ρn(v′; k)ρm(v; k)

〈v′ + n; k|v + m; k〉.

(23)

Due to the orthogonality relation of the number vectors (11), it follows that

〈σ, k; n|z, k; m〉 = Cn(|σ |)Cm(|z|)(σ ∗)m−n �(m + 1)�(m + 2k)

�(m − n + 1)�(m − n + 2k)�(2k)

× 2F3(m + 1,m + 2k; m − n + 1,m − n + 2k, 2k; σ ∗z) (24)

where m and n are positive integers, m � n and 2F3(. . . ; σ ∗z) is the generalized
hypergeometric series (see appendix A) [14].

One way to obtain a more explicit form of the overlap product (23) is to relate it to Meijer’s
G-function (see appendix A) [14, 15]

〈σ, k; n|z, k; m〉 = Cn(|σ |)Cm(|z|)(σ ∗)m−n

× G
1,2
2,4

(
−σ ∗z

∣∣∣∣∣−m, 1 − m − 2k

0, n − m, 1 + n − m − 2k, 1 − 2k

)
. (25)

If n 	= m and σ 	= z, the PA-BGCSs are not orthogonal.

2.2. Normalization

By equalizing the above quantities, we obtain the normalization

〈z, k; m|z, k; m〉 = 1 (26)

from which results the normalization constant Cm(|z|)

Cm(|z|) =
[
G

1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)]− 1
2

. (27)
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Then the normalized PA-BGCSs are

|z, k; m〉 =
[
G

1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)]− 1
2

×
∞∑

v=0

zv

�(v + 1)�(v + 2k)

√
�(v + m + 1)�(v + m + 2k)|v + m; k〉 (28)

where we have used equations (20), (21) and (27).
But, for simplicity of writing, we always write the PA-BGCSs in the manner of equation

(21), so this does not create any confusion.
We note here that, after straightforward calculations, the normalized PA-BGCSs can be

written also in the following ways:

|z, k; m〉 = 1√〈z, k|(K−)m(K+)m|z, k〉 (K+)
m|z, k〉 (29)

|z, k; m〉 = [�(m + 1)�(m + 2k)]
1
2 Cm(|z|)(

√
zK+)

−(2k−1)I2k−1(2
√

zK+)|0, k〉 (30)

where Iν(x) is the modified Bessel function.
So, for fixed z (and k), the PA-BGCSs |z, k; m〉 are normalized for any finite natural

number m.

2.3. Resolution of unity (or completeness)

From equation (21) we see that the state |z, k; m〉, as well as the PACSs of the HO [11–13],
is a linear combination of all number states starting with v = m. In other words, the first
m number states v = 0, 1, . . . ,m − 1, are absent from the state |z, k; m〉. Then, the unity
operator in this space is to be written as [13]

∞∑
v=m

|v; k〉〈v; k| =
∞∑

v=0

|v + m; k〉〈v + m; k| = I
(m)

k . (31)

This leads to the following resolution of unity∫ ∫
C

d2z

π
|z, k; m〉W(m)

k (|z|)〈z, k; m| = I
(m)
k =

∞∑
v=0

|v + m; k〉〈v + m; k|. (32)

It is evident that, in the right-hand side of the previous equation, the identity operator on the
full Hilbert space does not appear, since the initial m states of the basis set vectors are omitted.
Here I

(m)
k is only required to be a bounded, positive operator with a densely defined inverse

[33].
In order to determine the unknown positive weight function W

(m)
k (|z|), we must remember

that, at the limit m = 0, this weight function must lead to the weight function of the ordinary
BGCSs of the PHO (see equation (46) of our previous paper [9])

W
(0)
k (|z|) = 2K2k−1(2|z|)I2k−1(2|z|) (33)

where Kν(x) is the νth-order modified Bessel function of the second kind.
Here and below, all the integrals are performed over the whole complex z plane, where

z = r exp iϕ r ∈ [0,∞) ϕ ∈ [0, 2π] d 2z = d(Re z) d(Im z) = dϕ r dr.

(34)
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By substituting equation (21) into equation (32) we obtain∫ ∫
C

d2z

π
W

(m)

k (|z|)[Cm(|z|)]2
∞∑

v,v′=0

(z∗)v
′
zv

√
ρm(v; k)ρm(v′; k)

|v + m; k〉〈v + m; k| = I
(m)

k .

(35)

Then, it is obvious that the weight function W
(m)

k (|z|) must have the following structure

W
(m)

k (|z|) = 1

[Cm(|z|)]2
|z|2mg

(m)

k (|z|). (36)

After performing the angular integration, i.e.∫ 2π

0

dϕ

π
ei(v−v′)ϕ = 2δvv′ (37)

equation (35) becomes

2
∞∑

v=0

[
1

ρm(s − m − 1; k)

∫ ∞

0
d rr2v+2m+1g

(m)

k (r2)

]
|v + m; k〉〈v + m; k| = I

(m)

k . (38)

When we perform the variable change r2 = x and extend the natural values of v + m to
complex s such that v + m → s − 1, the integral from the above equation is called the Mellin
transform [14, 16]∫ ∞

0
dx xs−1g

(m)

k (x) = ρm(s − m − 1; k) = [�(s − m)]2[�(s − m + 2k − 1)]2

�(s)�(s + 2k − 1)
. (39)

Using the definition of Meijer’s G-function and the Mellin inversion theorem it follows
that [14]∫ ∞

0
dx xs−1Gm,n

p,q

(
αx

∣∣∣∣∣a1, . . . , an, an+1, . . . , ap

b1, . . . , bm, bm+1, . . . , bq

)

= 1

αs

∏m
j=1 �(bj + s)

∏n
j=1 �(1 − aj − s)∏q

j=m+1 �(1 − bj − s)
∏p

j=n+1 �(aj + s)
. (40)

Comparing equations (39) and (40), we obtain that

g
(m)
k (x) = G

4,0
2,4

(
x

∣∣∣∣∣ 0, 2k − 1
−m, −m, 2k − 1 − m, 2k − 1 − m

)
. (41)

Then, the weight function becomes

W
(m)

k (|z|) = 1

[Cm(|z|)]2
G

4,0
2,4

(
|z|2

∣∣∣∣∣m, 2k − 1 + m

0, 0, 2k − 1, 2k − 1

)

= G
1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)
G

4,0
2,4

×
(

|z|2
∣∣∣∣∣m, 2k − 1 + m

0, 0, 2k − 1, 2k − 1

)
(42)

where we have used equation (27) and the multiplication formula for Meijer’s G-function
(see appendix A) [14]. Because the measure in equation (32) must be necessary positive, the
function W

(m)
k (|z|) must be also a positive function [13, 16].
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Finally, the resolution of unity can be written in an exhaustive manner∫ ∫
C

d2z

π

1

[Cm(|z|)]2
G

4,0
2,4

(
|z|2

∣∣∣∣∣m, 2k − 1 + m

0, 0, 2k − 1, 2k − 1

)
|z, k; m〉〈z, k; m|

= I
(m)
k . (43)

This equation is also called the completeness relation for the PA-BGCSs.

3. Expectation values

The physical utility of the PA-BGCSs in different applications consists in the calculations
of the expectation (mean) values of a physical observable A, which characterizes the PHO,
and the powers of the particle number operator N, with respect to the PA-BGCSs |z, k; m〉:
〈z, k; m|A|z, k; m〉 ≡ 〈A〉(m)

z,k

= [Cm(|z|)]2
∞∑

v,v′=0

(z∗)v
′
zv

√
ρm(v′; k)ρm(v; k)

〈v′ + m; k|A|v + m; k〉. (44)

In order to calculate different expectation values (especially those related to the powers
of the particle number operator N), it is useful to evaluate the sum S(m)

n , with n = 0, 1, . . . (see
appendix B)

S(m)
n ≡

∞∑
v=0

xv

ρm(v; k)
vn

=
n∑

l=0

(−1)lc
(n)

l G
1,2
2,4

(
−x

∣∣∣∣∣−m, 1 − m − 2k

0, l, 1 − 2k, 1 − 2k

)
(45)

where x = |z|2 and the numerical coefficients c
(n)

l are easily obtainable from the following
operatorial identity(

x
d

dx

)n

=
n∑

l=1

c
(n)
l xl

(
d

dx

)l

. (46)

In order to simplify the equations, we use the following short notation

G
1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, l, 1 − 2k, 1 − 2k

)
≡ G

1,2
2,4

(
−|z|2

∣∣∣∣∣l
)

. (47)

The expectation values are useful to calculate the variance of a physical observable A in the
PA-BGCS |z, k; m〉:

(σA)
(m)
z,k ≡ 〈A2〉(m)

z,k −
(
〈A〉(m)

z,k

)2
. (48)

As an example, we calculate the photon number distribution. It is well known that the
number operator N is defined as the operator which diagonalizes the basis for the number
states. Using equation (11), we obtain

〈v′ + m; k|N |v + m; k〉 = (v + m)δvv′ (49)

〈v′ + m; k|N2|v + m; k〉 = (v + m)2δvv′ . (50)
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Then, according to equations (44) and (45), the expectation values for the number operator
and its second power are

〈N〉(m)
z,k = [Cm(|z|)]2

[
S

(m)
1 + mS

(m)
0

]
= m − G

1,2
2,4(−|z|2 | 1)

G
1,2
2,4(−|z|2 | 0)

(51)

〈N2〉(m)

z,k = [Cm(|z|)]2
[
S

(m)

2 + 2mS
(m)

1 + m2S
(m)

0

]
= m2 − (2m + 1)

G
1,2
2,4(−|z|2 | 1)

G
1,2
2,4(−|z|2 | 0)

+
G

1,2
2,4(−|z|2|2)

G
1,2
2,4(−|z|2|0)

. (52)

The second-order correlation function or the intensity correlation function, defined as in
[17, 18], is

(g2)
(m)
z,k = 〈N2〉(m)

z,k − 〈N〉(m)
z,k(

〈N〉(m)
z,k

)2 . (53)

Equivalently, further information about the inherent statistical properties of the PA-BGCS
|z, k; m〉 follows also from calculating the Mandel parameter Q

(m)

z,k [19, 20]

Q
(m)
z,k = (σN)

(m)
z,k

〈N〉(m)

z,k

− 1 (54)

so that

Q
(m)
z,k = 〈N〉(m)

z,k

[
(g2)

(m)
z,k − 1

]
. (55)

A state for which Q
(m)
z,k > 0 (or (g2)

(m)
z,k > 1) is called super-Poissonian (bunching effect),

if Q
(m)
z,k = 0 (or (g2)

(m)
z,k = 1) the state is called Poissonian, while a state for which Q

(m)
z,k < 0

(or (g2)
(m)

z,k < 1) is called sub-Poissonian (antibunching effect).
For the PA-BGCSs, the intensity correlation function is

(g2)
(m)
z,k =

m2 − m − 2m
G

1,2
2,4(−|z|2 | 1)

G
1,2
2,4(−|z|2 | 0)

+
G

1,2
2,4(−|z|2 | 2)

G
1,2
2,4(−|z|2 | 0)[

m − G
1,2
2,4(−|z|2 | 1)

G
1,2
2,4(−|z|2 | 0)

]2 . (56)

So, the statistical properties of the state |z, k; m〉 are dependent on the analytical properties
of the above ratio of Meijer’s G-functions (47), with l = 0, 1, 2. The analytic expression of
these ratios is difficult to express, so the intensity correlation function (as well as the Mandel
parameter) must be calculated numerically.

4. Statistical properties

We consider a quantum gas of the PHOs in thermodynamic equilibrium with the reservoir
(the thermostat) at temperature T, which obeys the quantum canonical distribution. Also,
we consider that the individual PHOs are in such states which are labelled by number state
vectors |v + m, k〉, where m is a positive integer and indicates the number of added quanta.
The corresponding normalized density operator for a fixed m and a fixed rotational quantum
number J (or, equivalently, via equations (4) and (14), for a fixed number k) is then

ρ
(m)
J ≡ ρ

(m)
k = 1

Z
(m)
k

∞∑
v=0

e−βEv+m,J |v + m, k〉〈v + m, k| (57)
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where m is chosen to be a positive integer, β = (kBT )−1, kB is Boltzmann’s constant, and
Z

(m)
J = Zk is the normalization constant, i.e. the partition function for a certain rotational

state J .
The Q-function, i.e. the diagonal elements of the density operator in the representation of

PA-BGCSs, is

〈z, k; m|ρ(m)
J |z, k; m〉 ≡ 〈

ρ
(m)
k

〉
z,k

= 1

Z
(m)
k

∞∑
v=0

e−βEvJ |〈z, k; m|v + m; k〉|2 (58)

which, using equations (21), (3) and (11), leads to〈
ρ

(m)
k

〉
z,k

= 1

Z
(m)

k

e−βEmJ [Cm(|z|)]2
∞∑

v=0

(|z|2 n
n+1

)v
ρm(v, k)

. (59)

Here we have used the well-known notation for the thermal mean occupancy for a HO with
the angular frequency ω = 2ω0

n ≡ 1

e2βh̄ω0 − 1
. (60)

The infinite series is of the same kind as that in equation (45), where n = 0 and
x = |z|2 exp (−2βh̄ω0) = |z|2 n

n+1 :〈
ρ

(m)
k

〉
z,k

= 1

Z
(m)
k

e−βEmJ [Cm(|z|)]2G
1,2
2,4

×
(

−|z|2 n

n + 1

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)
. (61)

By normalizing the density operator to unity, i.e.

Tr ρ
(m)

k =
∫ ∫

C

d2z

π
W

(m)

k (|z|)〈z, k; m|ρ(m)

k |z, k; m〉 = 1 (62)

performing the angular integration,using the multiplication property of the Meijer’s G-function
and integrating the product of G-functions (see appendix A), we obtain the expression of the
partition function

Z
(m)
k = e−β(EmJ −h̄ω0)

1

2sinh βh̄ω0
= e−2βmh̄ω0Z

(0)
k =

(
n

n + 1

)m

Z
(0)
k (63)

where

Z
(0)
k = eβmrω

2
0r

2
0

e−βh̄ω0(2k−1)

2sinh βh̄ω0
(64)

is the partition function for the usual (i.e. for m = 0) BGCSs of the PHO (see equation (70)
of our previous paper [9]).

Consequently, the diagonal elements of the density matrix may be written as〈
ρ

(m)
k

〉
z,k

= 2 eβ(EmJ −h̄ω0) sinh βh̄ω0

×
G

1,2
2,4

(
−|z|2 n

n+1

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)

G
1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

) . (65)
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Because the PA-BGCSs |z, k; m〉 form an overcomplete set of states, they may be used as
a basis set despite the fact that they are non-orthogonal. Let us perform the diagonal expansion
of the density operator ρ

(m)

k in the PA-BGCSs (for the CS of HO this diagonal representation
was introduced independently by Glauber [21] and Sudarshan [22] and is usually called the
Glauber–Sudarshan representation):

ρ
(m)
k =

∫ ∫
C

d2z

π
W

(m)
k (|z|)|z, k; m〉P (m)

k (z; β)〈z, k; m|. (66)

In [17] it is pointed out that the quasi-probability distribution function P
(m)

k (z; β) can have
negative values and strong singularities (it can become more singular than a delta function
somewhere in the complex z-plane), especially when the density operator corresponds to a
non-classical state with sub-Poissonian statistics. So, the diagonal P-representation of the
density operator behaves well in describing non-classical states of light.

In order to find the function P
(m)
k (z; β) let us begin with the diagonal elements of the

density operator ρ
(m)
k in the basis of the number states |v + m; k〉

〈v + m; k|ρ(m)
k |v + m; k〉

=
∫ ∫

C

d2z

π
W

(m)
k (|z|)〈v + m; k|z, k; m〉P (m)

k (z; β)〈z, k; m|v + m; k〉.
(67)

The diagonal elements are well known from equation (57)

〈v + m; k|ρ(m)
k |v + m; k〉 = 1

Z
(m)
k

e−βEv+m;J = 2sinh βh̄ω0 e−βh̄ω0(2v+1) (68)

as well as the scalar product from equation (21)

〈v + m; k|z, k; m〉 = Cm(|z|) zv

√
ρm(v; k)

. (69)

After these suitable substitutions, using equation (42), performing the angular integration
and the variable change X = r2 exp (2βh̄ω0) = r2 n+1

n
, we obtain

2sinh βh̄ω0

(
n + 1

n

)m+1
√

n

n + 1
= �(v + m + 1)�(v + m + 2k)

[�(v + 1)]2[�(v + 2k)]2

∫ ∞

0
dXXv+m

× G
4,0
2,4

(
X

n

n + 1

∣∣∣∣∣ 0, 2k − 1
−m, −m, 2k − 1 − m, 2k − 1 − m

)
P

(m)

k (X; β). (70)

Now, it is obvious that the P-function must have the following structure

P
(m)
k (X; β) = C(m)(β)

f
(m)

k (X)

G
4,0
2,4

(
X n

n+1

∣∣∣∣∣ 0, 2k − 1
−m, −m, 2k − 1 − m, 2k − 1 − m

) (71)

and the radial integral is∫ ∞

0
dXXv+mf

(m)

k (X) = [�(v + 1)]2[�(v + 2k)]2

�(v + m + 1)�(v + m + 2k)
(72)

i.e. the same integral as equation (39). Then, the solution is

gm(X) = G
4,0
2,4

(
X

∣∣∣∣∣ 0, 2k − 1
−m, −m, 2k − 1 − m, 2k − 1 − m

)
. (73)
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After the identification of the normalization constant C(m)(β), the final expression of the
P-function is

P
(m)
k (X; β) = 1

n

(
n + 1

n

)m
G

4,0
2,4

(
|z|2 n+1

n

∣∣∣∣∣ 0, 2k − 1
−m, −m, 2k − 1 − m, 2k − 1 − m

)

G
4,0
2,4

(
|z|2

∣∣∣∣∣ 0, 2k − 1
−m, −m, 2k − 1 − m, 2k − 1 − m

)
.

(74)

It is not difficult to prove that the P-function satisfies the normalization condition∫ ∫
C

d2z

π
W

(m)

k (|z|)P (m)

k (z; β) = 1. (75)

In this way, the diagonal representation of the normalized density operator of the PHO in the
PA-BGCS representation is

ρ
(m)

k = 1

n

∫ ∫
C

d2z

π
G

1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)

× G
4,0
2,4

(
|z|2 n + 1

n

∣∣∣∣∣m, 2k − 1 + m

0, 0, 2k − 1, 2k − 1

)
|z, k; m〉〈z, k; m|.

(76)

Then the thermal expectation value (the thermal average) of an observable A concerning the
PHO is given by

〈A〉(m)
k = Tr

(
ρ

(m)
k A

)
= 1

n

∫ ∫
C

d2z

π
G

1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)

× G
4,0
2,4

(
|z|2 n + 1

n

∣∣∣∣∣m, 2k − 1 + m

0, 0, 2k − 1, 2k − 1

)
〈A〉(m)

z,k . (77)

In many cases (e.g. with the aim of calculating the thermal averages of N and N2) it is
necessary to solve the integrals involving products of two G-functions of the following kind

I (l) ≡
∫ ∫

C

d2z

π
G

1,2
2,4

(
−|z|2

∣∣∣∣∣−m, 1 − m − 2k

0, l, 1 − 2k, 1 − 2k

)

× G
4,0
2,4

(
|z|2 n + 1

n

∣∣∣∣∣m, 2k − 1 + m

0, 0, 2k − 1, 2k − 1

)
. (78)

When we perform the integration (see appendix A), we obtain

I (l) = G
1,2
2,2

(
− n

n + 1

∣∣∣∣∣0, 0
0, l

)
= (−1)ll! (n)l+1 . (79)

In the latter equation we have used the property (A.129) and the relation [14]

G
1,1
1,1

(
axα

∣∣∣∣∣
β

α

β

α

)
= a

β

α
xβ

1 + axα
. (80)
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By using this ansatz, the thermal expectation values of the number operator N and of the square
of the number operator N2 respectively are

〈N〉(m)
k = 1

n
[mI(0) − I (1)] = (m + n) ≡ 〈N〉(m) (81)

〈N2〉(m)
k = 1

n
[m2I (0) − (2m + 1)I (1) + I (2)] = (m + n)2 + n(n + 1) ≡ 〈N2〉(m). (82)

When we put m = 0, we obtain the same expressions as the Bose–Einstein thermal
distribution (see equations (83) and (84) of our previous paper [9]) and, consequently, we can
say that the PHO is suitable to be associated with a boson (e.g. a photon).

On the other hand, we observe that these expectations are independent of the Bargmann
index k, i.e. in the previous analysis they are independent of the rotational quantum number J .

With these expectations, we can define and calculate the thermal second-order correlation
function (g(2))

(m)

k (i.e. the thermal analogue of the second-order correlation function for the
state |z, k; m〉)

(g(2))
(m)

k ≡ 〈N2〉(m)
k − 〈N〉(m)

k(
〈N〉(m)

k

)2 = 1 +
(n)2 − m

(m + n)2
≡ (g(2))(m). (83)

The thermal analogue of the Mandel parameter is

Q
(m)
k = 〈N〉(m)

k

[
(g(2))(m) − 1

] = (n)2 − m

m + n
≡ Q(m). (84)

These quantities are, also, independent of k.
Regarded as the function of the thermal mean occupancy n, the thermal analogue of the

Mandel parameter Q(m) takes the following extreme values

lim
n→0

Q(m)(n) = −1 lim
n→∞

Q(m)(n) = ∞ (85)

and also

lim
n→√

m
Q(m)(n) = 0. (86)

The latter value is the limit which determines the characteristics of sub-Poissonian, Poissonian
and supra-Poissonian thermal states of the PHO. Thus, the condition for the existence of
sub-Poissonian statistics is

n <
√

m (87)

implying that the field is non-classical.
In the particular case of the usual BGCSs, i.e. for m = 0, we obtain

(g(2))(0) = 2 Q(0) = n. (88)

This equation points out a new significance of the thermal analogue of the Mandel parameter;
for the usual BGCSs it represent the thermal mean occupancy.

The normalized density operator characterizes the quantum gas of PHOs, in the states
with m added photons, regarded as the whole quantum system

ρ(m) = 1

Z(m)

∑
J

(2J + 1)Z
(m)
J ρ

(m)
J (89)

where ρ
(m)

J ≡ ρ
(m)

k and Z(m) are the diagonal representation of the normalized density operator
and the total partition function for the rotational state J and m added photons, respectively
(see equation (57)).
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Consequently, the total thermal expectation value of an observable A is

〈A〉(m) = Tr Aρ(m) = 1

Z(m)

∑
J

(2J + 1)Z
(m)
J Tr Aρ

(m)
J (90)

where Tr AρJ = 〈A〉(m)
J = 〈A〉(m)

k is the thermal expectation value for the rotational state J

and m added photons (see equation (77)).
Similarly, the total partition function is

Z(m) =
∑

J

(2J + 1)
∑

v

e−βEv+m,J =
∑

J

(2J + 1)Z
(m)
J =

∑
J

(2J + 1)

(
n

n + 1

)m

Z
(0)
k (91)

where Z
(m)
J ≡ Z

(m)
k is the vibrational partition function for the states with fixed rotational

number J (or fixed k) and m added photons. Similarly, Z
(0)
J ≡ Z

(m)
k is the same for m = 0.

The expression for this last quantity is

Z
(m)
k = eβmrω

2
0r

2
0

1

2sinh βh̄ω0
e−xα (92)

where we have denoted x = βh̄ω0.
Also, if we use the notation

Tα(x) =
∞∑

J=0

(2J + 1) e−xα (93)

the total partition function becomes

Z(m) =
(

n

n + 1

)m

Z(0). (94)

The corresponding expression for m = 0 was obtained in paper PI (see equation (89) of [9])

Z(0) = eβmrω
2
0r

2
0

1

2sinh βh̄ω0
Tα(x). (95)

We see that the contribution of m added photons in the partition function is separated,
which has as a consequence the possibility to evince the corresponding contribution in the
expressions of internal and free energies, as seen in the following.

In paper PI, we have analysed the conditions for which all these expressions lead, at the
harmonic limit, to the corresponding results for the HO-3D [9].

The free energy per particle (per PHO) is

F (m) = − 1

β
ln Z(m) = m

1

β
ln

(
n + 1

n

)
+ F (0) (96)

where F (0) is the free energy for the PHO quantum gas without added photons

F (0) = − 1

β
ln Z(0) = −mrω

2
0r

2
0 +

1

β
ln 2sinh βh̄ω0 − 1

β
ln Tα. (97)

Similarly, the internal energy per particle can be calculated in two ways: (a) directly, by
using the partition function

U(m) = − ∂

∂β
ln Z(m) (98)

and (b) by using the general equation (77) for the thermal expectations

U(m) = 〈Hα〉(m) = 1

Z(m)

∑
J

(2J + 1)Z
(m)

k 〈Hα〉(m)

k (99)

where the expectation of the Hamiltonian Hα is calculated using equations (6) and (5).
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Both ways lead to the following result

U(m) = 2mh̄ω0 + U(0) (100)

where U(0) is the internal energy for the PHO quantum gas without added photons which was
calculated in paper PI (see equation (95)) [9]

U(0) = −mrω
2
0r

2
0 + h̄ω0

[
coth βh̄ω0 − ∂

∂x
ln Tα

]
. (101)

Then, for the entropy of the PHO

S(m) = kBβ(U(m) − F (m)) (102)

we obtain the following expression

S(m) = mkB

(
β2h̄ω0 + ln

n

n + 1

)
+ S(0) (103)

where

S(0) = kBβ(U(0) − F (0)) (104)

is the entropy of the PHO quantum gas without added photons which was calculated in paper
PI (equation (97))

S(0) = kB(βh̄ω0 coth βh̄ω0 − ln 2sinh βh̄ω0) + kB

(
ln Tα − βh̄ω0

∂

∂x
ln Tα

)
. (105)

In the above expressions for the free energy, the internal energy and the entropy we have
evinced the contribution of added photons.

Finally, the molar heat capacity at the constant volume

C
(m)
V = 1

ν

∂U(m)

∂T
= −1

ν
kBβ2 ∂U(m)

∂β
(106)

is not influenced by the presence of added photons (see equation (99) of our previous paper [9])

C
(m)
V

R
=
[( x

sinh x

)2
+ x2 ∂2

∂x2
(ln Tα)

]
= C

(0)
V

R
(107)

where R is the constant of the ideal gas.

5. The time dependence

At the end of this paper, we refer to the time dependence of the PA-BGCSs. The time-
dependent BGCSs of the PHO |z, k; t〉 ≡ |z, k; 0; t〉 was previously obtained by acting on the
time-independent BGCS |z, k〉 ≡ |z, k; 0; 0〉 by the evolution operator U(t) = exp

(− i
h̄
Hkt

)
[9]

|z, k; 0; t〉 = e− i
h̄
Hk t |z, k; 0; 0〉. (108)

Also, the unitary evolution operator U(t) transforms the PA-BGCS into

|z, k; m; t〉 = U(t)|z, k; m; t〉 ≡ U(t)|z, k; m〉
= Nm(|z|)[U(t)(K+)

mU+(t)]U(t)|z, k〉 ≡ Nm(|z|)[K+(t))]
m|z, k; 0; t〉 (109)

where the time-dependent raising operator is

K+(t) = U(t)K+U
+(t) (110)

and satisfies the initial condition K+(0) = K+.
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The time-dependent lowering operator is defined similarly

K−(t) = U(t)K−U+(t). (111)

By rewriting equation (15) as follows

K−|z, k; 0; 0〉 = z|z, k; 0; 0〉 (112)

and using the unitarity of the evolution operator, we obtain

K−(t)|z, k; 0; t〉 = z|z, k; 0; t〉. (113)

On the other hand, the explicit time dependence of the PA-BGCSs can be obtained by
expressing the result of the action of the evolution operator on the state |z, k; m; 0〉, using
equation (21).

The radial Schrödinger equation for the PHO is

Hk|v + m, k〉 = [
h̄ω0(2v + 2m + 2k) − mrω

2
0r

2
0

] |v + m, k〉 = (Em,J + h̄ω02v)|v + m, k〉
(114)

where, according to equations (5), (6) and (14), we have

Hk ≡ Hα = h̄ω0H
(red)
α (y) − mrω

2
0r

2
0 . (115)

After the calculations we obtain

|z, k; m; t〉 = e− i
h̄
Em,J tCm(|z|)

∞∑
v=0

(
z e−i2ω0t

)v
√

ρm(v; k)
|v + m, k〉. (116)

When we use the notation

z(t) = z e−2iω0 t (117)

we obtain

|z(t), k; m〉 = Cm(|z(t)|)
∞∑

v=0

[z(t)]v√
ρm(v; k)

|v + m, k〉. (118)

In this way, we obtain the following time dependence of the PA-BGCSs

|z, k; m; t〉 = e− i
h̄
Em,J t |z(t), k; m〉. (119)

The time-dependent photon-added coherent states have applications when the Hamiltonian
is time dependent. As pointed out in [12] (and references therein) relating to the PACS for the
usual HO, we believe also that the PA-BGCSs may have applications when the PHO (the field
mode) angular frequency is time variable, according to a known function ω(t) (also, for a HO
with a singular perturbation [26–28]). In this case, the initial PA-BGCSs |z, k; m; 0〉, created
in some way in a cavity or in a ion trap, evolves at t > 0 according to equation (119). The
time-dependent coherent states of the generalized time-dependent parameter oscillator [29]
will be useful for future studies in quantum optics as well as in atomic and molecular physics.

6. Concluding remarks

In this paper, we have constructed and studied the properties of an interesting class of non-
classical states, namely the PA-BGCSs of the PHO. These states can be obtained by repeated
application of the raising operator K+ on the basis coherent states |z, k〉, i.e. on the usual
BGCSs which, for the PHO, were deduced and studied previously [9].

Physical properties of closely-related states to those discussed in the present paper have
been recently studied in [35]. These states are squeezed number states obtained through the
use of the group operator, rather than as eigenstates of the algebra operator.
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The PA-BGCSs |z, k; m〉 are intermediate states between the usual BGCSs |z, k〉 and the
number states |m; k〉 (the eigenstates of the number operator N)

|z, k; m〉 −→
{ |z, k〉 if m → 0, z, k = const
|m; k〉 if m, k = const z → 0.

(120)

The properties and some applications of such states, intermediate or interpolating between
the coherent and the number states, have been recently investigated well in [36].

We have developed the PA-BGCSs in terms of the number states |v; k〉 and we find the
analytical form of the positive weight function W

(m)

k (|z|) in the corresponding resolution of
the unity. For fixed z and k (the Bargmann index), PA-BGCSs are normalized for any finite
m. As pointed out in [30], due to the structure of the function ρm(v; k) (equation (20)),
the normalization constant Cm(|z|) (27), the weight function W

(m)
k (|z|) and, consequently,

the expectation values are always expressible through certain generalized hypergeometrical
series pFq(. . . ; x) which are special cases of the general Meijer’s G-function. In this way,
PA-BGCSs have become an interesting application field of the general Meijer’s G-function.

In section 3 we have calculated some expectation values related to the first two powers
of the number operator N in order to evaluate the characteristic of the field, i.e. we have
calculated the second-order correlation function (g2)

(m)
z,k and the Mandel parameter Q

(m)
z,k . As

is known, the Mandel parameter is a convenient measure of the deviation of the photon number
statistics from the Poisson distribution [31]. It vanishes for the Poisson distribution, and is
positive or negative according to whether the distribution is super-Poissonian (bunching effect)
or sub-Poissonian (antibunching effect).

In section 4 of this paper we have examined the statistical properties of the quantum
gas of the PHOs in thermodynamical equilibrium with the reservoir at temperature T, which
obeys the quantum canonical distribution. We have constructed the density matrix in the
PA-BGCSs representation and, especially, its diagonal representation and we have found
the P-function. In order to prove the correctness of the expressions we have obtained for the
density operator ρ(m), we have calculated some thermal expectation values (thermal averages)
for the few observables under consideration for the PHO quantum gas (the thermal analogue
of the second correlation function) (g2)(m) and the Mandel parameter Q(m), as well as the free
and internal energies, the entropy and molar heat capacity at the constant volume). In the
expressions for the free and internal energies and the entropy, we have evinced the contribution
of the added photons, while the added photons do not contribute to the molar heat capacity at
constant volume.

In our opinion, the whole construction of the PA-BGCSs for the PHO seems to be a new
result because, to our knowledge, this approach has not yet appeared in the literature. Among
these new obtained expressions, the main results seem to be the expressions for the weight
function W

(m)

k (|z|) and for the P-function.
The same as for other families of coherent states, a legitimate open question is how

to construct photon-substracted BGCSs for the PHO, i.e. the states obtained by acting with
the lowering operator K− on some state |̃z, k〉 in order to produce the normalized state
|̃z, k; m〉 = Ñm(|̃z|)(K−)m |̃z, k〉. For the usual HO this problem has recently been studied in
detail in [23–25]. Contemporaneously with Barut and Girardello, many authors have studied
and applied these coherent states (e.g. SU(1, 1) coherent states applied to superfluidity in
[34]).

Because |z, k〉 is an eigenstate of (K−)m (see equation (15) and [9]), it follows that the
state |̃z, k〉 must be different from the state |z, k〉 and, as a consequence, the photon-subtracted
BGCS for the PHO would not be normalizable at z = 0.
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Here we point out that, at the limit m → 0, we have

lim
m→0

F (m) = F (0) (121)

i.e. each formula or expression which is related to PA-BGCS (F (m)) leads, at the limit m → 0,
to the corresponding formula or expression related to BGCS (F (0)). In this way, we recover
all the results obtained for the usual BGCSs in our previous paper [9].

Finally, we observe that the HO-3D can be considered as a limit oscillator of the PHO.
This limit is called the harmonic limit of the PHO and, for a certain physical observable A, is
defined as (see [32])

lim
ω → 2ω0

r0 → 0
α → J + 1

2

F (PHO) ≡ lim
HO

F (PHO) = F (HO). (122)

Here the quantities with the superscript (PHO) correspond to the PHO with the angular
frequency ω, while the same quantities with the superscript (HO) correspond to the HO-3D
(with the frequency ω0).

This assertion may be a supplementary argument for the investigation of the behaviour
and properties of the PHO.
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Appendix A

The generalized hypergeometric series are defined as [14]

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

v=0

∏p

j=1(aj )v∏q

j=1(bj )v

xv

v!
(A.123)

with p � q and |z| < 1, while

(aj )v = �(aj + v)

�(aj )
. (A.124)

The generalized hypergeometric function is related to Meijer’s G-function as follows [14]

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∏q

j=1 �(bj )∏p

j=1 �(aj )
G

1,p

p,q+1

(
−x

∣∣∣∣∣(1 − ap)

0, (1 − bq)

)
. (A.125)

The multiplication formula of Meijer’s G-function [14]

xσGm,n
p,q

(
x

∣∣∣∣∣(ap)

(bq)

)
= Gm,n

p,q

(
x

∣∣∣∣∣(ap + σ)

(bq + σ)

)
(A.126)

and the differential property [14]

xl

(
d

dx

)l

Gm,n
p,q

(
x

∣∣∣∣∣(ap)

(bq)

)
= (−1)lG

m,n+1
p+1,q+1

(
x

∣∣∣∣∣ 0, (ap)

(bq), l

)
(A.127)
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lead to the following integral involving products of G-functions [14, 15]∫ ∞

0
dx Gm,n

p,q

(
ηx

∣∣∣∣∣(ap)

(bq)

)
Gµ,ν

σ,τ

(
ωx

∣∣∣∣∣(cσ )

(dτ )

)

= 1

η
Gn+µ,m+ν

q+σ,p+τ

(
ω

η

∣∣∣∣∣−(bm), (cσ ), −bm+1, . . . , −bq

−(an), (dτ ) −an+1, . . . , −ap

)
. (A.128)

If one of j = m + 1, . . . , q of bj is equal to one of k = 1, 2, . . . , n of ak, the G-function
reduces to one of lower order and the parameters p, q and n are each decreased by unity. Thus,
if p, q, n � 1

Gm,n
p,q

(
x

∣∣∣∣∣a1, . . . , ap

b1, . . . , bq−1, a1

)
= G

m,n−1
p−1,q−1

(
x

∣∣∣∣∣a2, . . . , ap

b1, . . . , bq−1

)
. (A.129)

Appendix B

We consider the general sum

S(m)
n ≡

∞∑
v=0

xv

ρm(v, k)
vn (B.130)

from which, for the particular case n = 0, we obtain the fundamental sum

S
(m)

0 =
∞∑

v=0

xv

ρm(v, k)
= �(m + 1)�(m + 2k)

[�(2k)]2 2F3(m + 1,m + 2k; 1, 2k, 2k; x). (B.131)

On the other hand, due to the relation between the hypergeometric series and Meijer’s
G-function (A.125), using equation (27), we obtain

S
(m)

0 = G
1,2
2,4

(
−x

∣∣∣∣∣−m, 1 − m − 2k

0, 0, 1 − 2k, 1 − 2k

)
= [Cm(

√
x)]−

1
2 . (B.132)

Moreover, each power vn can be written as a linear combination of the binomial products

vn =
n∑

l=1

c
(n)

l

v!

(v − l)!
=

n∑
l=1

c
(n)

l

(
v

l

)
l! (B.133)

where the coefficients c
(n)
l which depend on n can easily be determined.

The above equality is useful to express the sum S(m)
n with n > 0 through the derivatives

of the fundamental sum S
(m)
0 as follows

S(m)
n =

(
x

d

dx

)n

S
(m)
0 =

n∑
l=1

c
(n)
l xl

(
d

dx

)l

S
(m)
0 . (B.134)

By using the property (B.133) and then applying the properties (A.127) and (A.129) to
the equation (B.132), finally we obtain

S(m)
n =

n∑
l=1

(−1)lc
(n)
l G

1,2
2,4

(
−x

∣∣∣∣∣−m, 1 − m − 2k

0, l, 1 − 2k, 1 − 2k

)

≡
n∑

l=1

(−1)lc
(n)
l G

1,2
2,4(−x|l). (B.135)
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