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Abstract

A method is presented for solving the Bloch equation for Morse potential, based on the application of Fourier transformation
of the density matrix. The results obtained agree completely with the results obtained by other methods, however its advantage
lies in its elegance and intuitivity of the approach.q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In order to obtain more correct estimate of the interaction
potential in the case of diatomic molecule vibrations,
several models of the internuclear potential were established
during the decades [1–3]. Among many models for the
potential function, a particular role is given to the potential
proposed by Morse [4]:

V�r� � D�1 2 exp�2a�r 2 re���2; �1�
wherer represents the internuclear coordinate,re is the equi-
librium position of the system of two nuclei in the diatomic
molecule,a is Morse constant of the anharmonicity, andD
is the dissociation energy of the diatomic molecule.

The arguments for such a statement are the following: (a)
Morse potential allows for an analytical solution of the
Schrödinger equation and is characterized by a finite
number of bound states; (b) theoretical spectroscopic results
obtained using Morse potential in the case of vibrational
motion of diatomic [2] (as well as poliatomic) molecules,
and also in the case of molecular collisions agree well with
experimental data.

All this makes this potential a subject of numerous prac-
tical applications and related results are rather often quoted.
We think that these are strong enough reasons to deal in
more detail with another method for solving Bloch equation
for Morse potential. The result obtained is in no way a new

one, it has been known for a long time, however, we
consider that each new approach to solving some problem
can help clarifying some aspects, or even raising some new
questions. From this point of view, the method proposed
definitely broadens the scope of the application of the very
model.

2. Bloch equation

Generally speaking, when one considers a quantum
physical system characterized by a certain potentialV(r),
the first problem is to solve the corresponding Schro¨dinger
equation for the stationary states:

2
"2

2m
7 2

~r 1 V�r�
" #

Cn�~r� � EnCn�~r�; �2�

whereCn�~r� denotes eigenfunctions, andEn—energy eigen-
values of the system, whilen denotes the set of all quantum
numbers determining a particular state of the system.

The system which can be completely characterized by the
eigenfunctionCn�~r�; i.e. when the information about the
system is complete, is entitled as thepure system, and the
corresponding states arepure quantum states. This implies
that these states are of ideal character, since it is very diffi-
cult to obtain the complete information about any quantum
system in practice.

In the case of realistic quantum systems it is generally
impossible to obtain the complete information, so such
systems are entitledmixed systems, and corresponding states
are no more pure ones, butmixed quantum states. Mixed
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systems are not characterized by a eigenfunction, but by a
density matrix.

If we consider a system characterized by the quantum
canonical distribution, in the coordinate representation,~r ;
the density matrixr�~r ; ~r 0;b� is expressed in the following
way:

r�~r ; ~r 0;b� � 1
Z�b�

X
n

e2bEn
Cn�~r�C p

n�~r�

;
1

Z�b�
X
n

e2bEn
rn�~r ; ~r 0�: �3�

The importance of the density matrix lies mostly in the fact
that itstrace, (or Spur) is so called partition function or sum
(integral) of the states (depending on the character of the
energy spectrum: discrete or continuous):

Z�b� �
Z
r�~r ; ~r;b� d~r : �4�

One can express all thermodynamical quantities charac-
terizing particular quantum statistical system in terms of the
partition function [5].

An alternative approach for the calculation of the density
matrix is to solve the Bloch equation [6]:

2
2

2b
r�~r ; ~r 0;b� � H�~r�r�~r ; ~r 0;b�; �5�

with the initial condition:

lim
b!0

r�~r ; ~r 0;b� � d�~r 2 ~r 0�: �6�

In our opinion, this is more elegant way, since in this case
one generally avoids direct solving of Schro¨dinger equation,
i.e. this method does not assume the knowledge of energy
eigenvalues. However, Bloch equation is a partial differen-
tial equation, whose solving in the majority of cases repre-
sents a complex mathematical problem, and makes the
problem more challenging.

In the case of the harmonic oscillator potential, the Bloch
equation was solved by Feynman [5]. Applying this method,
this equation was solved for somewhat more complicated
case of the rotational harmonic oscillator [7].

The problems becomes complicated when the potentials
of anharmonic character are taken into account, since, in
most of the cases, the partial differential equation can not
be solved exactly analytically.

3. The statement of the problem

We are interested in solving the Bloch equation for the
case of one-dimensional Morse potential:

2
2

2b
r�x; x0;b� � 2

"2

2m
22

2x2 1 D�1 2 e2ax�2
" #

r�x; x0;b�;

�7�

with the initial condition:

lim
b!0

r�x; x0;b� � d�x 2 x0�: �8�

We assume that it is worth looking for a compactanaly-
tical solution (i.e. in terms of some special analytical func-
tions), of Bloch equation for Morse potential, since this
would open the door tonew, anharmonic (Morse) spectro-
scopy( ; [MS]), which would include as the limiting case
(for x small) the present harmonic spectroscopy( ; [HS]):

lim
x!0;�xp�

�MS� � �HS�; �9�

having in mind the limit for the potentials:

lim
x!0;�xp�

VMorse� Vharmonic: �10�

In this way, numerous calculations of spectroscopic quan-
tities would be simplified and also their analytical expres-
sions could be derived, which would make easier the
estimate of various physical parameters entering these
analytical expressions.

In the paper [7] the case with present rotation was
discussed (quantum rotational numberJ ± 0) for Morse
oscillator, in the manner in which it was done in the work
of Pauling and Wilson [8] for the rotationless case. The
following expression was obtained for the diagonal
elements of the density matrix:

rvJ�z� �
aG
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d
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!

v!G

 
c
d

2 2v 2 1

!
G

 
c
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2 2v

! e2zz�c=d�22v21

�
"
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2 v;

c
d

2 2v; z

!#2

; �11�

The standard notation used here is:

c
d
� 2ye

a
���
D
p

D 2
s

are
2 2

3
are

� �
J�J 1 1�

D 1
s

are
21 1

3
are

� �
J�J 1 1�

� � 1=2 ; �12�

z� 2

����
2m
p
a"

D 1 sJ�J 1 1� 2
1
are

1
3

a 2r2
e

� �� �1=2

e2a�r2re�;

�13�

ye �
������
2mD
p

"
; s � " 2

2mr2e
: �14�

From here on,v represents quantum vibrational number,
G (t)—Euler function of II order, andF(2v, g ; z)—degen-
erated hypergeometrical function.

By solving the Schro¨dinger equation for Morse potential
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[8], energy eigenvalues were obtained:

EvJ � D 1 sJ�J 1 1� 1 2
3
are

1
3

a 2r2
e

� �

2
a"

2
����
2m
p

� �2 c
d

2 2v 2 1
� �2

; �15�

as well as eigenfunctions:

CvJ�z� �
" aG

 
c
d

2 v

!

v!G

 
c
d

2 2v 2 1

!
G

 
c
d

2 2v

! # 1=2

� e�21=2�zz��1=2���c=d�22v21��F

 
2 v;

c
d

2 2v; z

!
: �16�

So, on the basis of the Eqs. (3), (15) and (16) there exist
some vague indications how the functionr�x; x0;b� should
look like.

4. Solving method

We shall try to apply the method of Fourier transforma-
tion, so we first introduce dimensionless quantities:

y�
������
2mD
p

"
x; f � bD; l � 2i

a"������
2mD
p ; 2ig; �17�

and then introduce Fourier transformation for the function
r�y; y0; f � :

F�k; k0; f � ;
1

2p

Z1 ∞

2 ∞
e2i�ky2k0y0�r�y; y0; f � dy dy0: �18�

In this way we obtain the following differential-difference
equation related to the Bloch partial differential equation
(7):

2
2

2f
F�k; k 0; f � � �k2 1 1�F�k; k 0; f �2 2F�k 1 l; k0; f �

1 F�k 1 2l; k0; f � �19�
which we try to solve by the method of separation of vari-
ables. For this purpose we treat the functionF�k; k 0; f � in the
form of an infinite sum of the products of two functions with
different variables:

F�k; k0; f � �
X

v

Av�k�Bv�k0; f �; �20�

where v� 0; 1; 2;… After substituting Eq. (20) into Eq.
(19), we have:

2Av�k� 2Bv�k 0; f �
2f

� Bv�k0; f ��k2Av�k�1 Av�k�1 Av�k 1 2l�2 2Av�k 1 l��:
�21�

After the separation of variables, we arrive to two sepa-
rate equations:

Av�k 1 2l�2 2Av�k 1 l�
Avk

1 1 1 k2

� 2
1

Bv�k 0; f �
2Bv�k0; f �

2f
; p: �22�

Now we have to solve the equation:

2
1

Bv�k0; f �
2Bv�k0; f �

2f
� p;

2Bv�k0; f �
2f

1 0
2Bv�k0; f �

2k 0
� 2pBv�k 0; f �;

�23�

meaning that we should have:

df
1
� dk0

0
;

df
1
� 2

1
p

dBv�k0; f �
Bv�k0; f � ;

dBv�k0; f �
Bv�k0; f � � 2p df ; Bv�k0; f � � C1;v e2pf

;

�24�

leading to:

dk0 � 0; k 0 � C2; C1;v � Fv�C2�: �25�
So we obtain:

Bv�k0; f � � Fv�k 0� e2pf
; �26�

where, at the moment,F is an arbitrary function. It will be
determined later when we discuss the problem of the
symmetry of the functionF�k; k0; f �with respect to variables
k andk0, i.e. the symmetry of the density matrix (which in
this case is a real function), with respect to variablesx and
x0.

In order to solve the equation with the variablek:

Av�k 1 2l�2 2Av�k 1 l�1 k2Av�k� � pAv�k� �27�
we multiply it by eiky and integrate the result overk from
2∞ to 1 ∞:Z1 ∞

2 ∞
dk eikyAv�k 1 2l�2 2

Z1 ∞

2 ∞
dk eikyAv�k 1 l�

1
Z1 ∞

2 ∞
dk eikyAv�k�1

Z1 ∞

2 ∞
dk eikyk2Av�k�

� p
Z1 ∞

2 ∞
dk eikyAv�k�: �28�

We introduce a new function:Z1 ∞

2 ∞
dk eikyAv�k� � av�x� �29�

and derive it twice:Z1 ∞

2 ∞
dk eikyk2Av�k� � 2

d2av�y�
dy2 : �30�

After the substitutionk 1 t � q; dk � dq; k � q 2 t; we
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obtain:Z1 ∞

2 ∞
dk eikyAv�k 1 t� �

Z1 ∞

2 ∞
dq eiqy e2itxAv�q�

� e2itx
Z1 ∞

2 ∞
dq eiqyAv�q� � e2ityav�y�: �31�

The above equations lead to a new one:

d2av�y�
dy2 2 �e22ily 2 2e2ily 2 p 1 1�av�y� � 0: �32�

Taking into account that according to Eq. (17), il � g;
the above equation can be written in the following way:

2
d2av�y�

dy2 1 �1 2 2e2gy 1 e22gy�av�y� � pav�y�: �33�

This equation is, in fact, the Schro¨dinger equation for the
stationary states for Morse potential, if one sets"2

=2m� 1
andD � 1:

So, the solution of this equation for the domain of discrete
energy values is [8]:

av�y� � Cv e2�1=g�e2gy

e2y
����
12p
p

F 2v; 1 2
2
g

�������
1 2 p

p
;

2
g

e2gy
� �

;

�34�
where F(…) is the degenerated hypergeometric function,
and this form of the solution is valid if the following condi-
tion is fulfilled:�������

1 2 p
p � 1 2 g v 1

1
2

� �
: �35�

So, the numberv has the meaning of the principal quan-
tum number and for the bound states of two nuclei of a
diatomic molecule, it can have a limited number of values,
corresponding to the maximal number of the bound states
vmax:

v� 0; 2; 3;…vmax� 1
g

2
1
2

� �
; �36�

where the symbol […] implies an integer number of the
quantity within brackets.

Taking into account the condition for the quantityp, the
solution can be written in another way:

av�y� � Cv e2�1=g�e2gy

e2�12g�v1�1=2���yF 2v;
2
g

2 2v;
2
g

e2gy
� �

:

�37�
Following the definition, the functionAv(k) is expressed

in the following way:

Av�k� � Cv����
2p
p

Z1 ∞

2 ∞
dy e2�1=g�e2gy

e2�ik112g�v1�1=2���y

�F 2v;
2
g

2 2v;
2
g

e2gy
� �

; �38�

but the integral will not be calculated for the moment.

In order to assure the above mentioned symmetry we
choose:

Fv�k0� � Av�k0�; �39�
so that the functionF�k; k 0; f � will have the following struc-
ture:

F�k; k 0; f � �
Xvmax

v�0

e2f �2g�v1�1=2��2g2�v1�1=2��2�Av�k�Av�k0�: �40�

Substituting the corresponding expressions for these
functions, the functionF�k; k0; f � can be written as:

F�k; k 0; f � � 1
2p

Z1 ∞

2 ∞
dy dy0 e2i�ky1k 0y0 �

�
Xvmax

v�0

C2
v e2f �2g�v1�1=2��2g2�v1�1=2��2� e2�1=g��e2gy1e2gy0 �

× e2�12g�v1�1=2����y1y0 �F 2v;
2
g

2 2v;
2
g

e2gy
� �

�F 2v;
2
g

2 2v;
2
g

e2gy0
� �

: �41�

Comparing this equation with Eq. (18), the density matrix
is obtained as:

r�y; y0; f � �
Xvmax

v�0

C2
v e2f �2g�v1�1=2��2g2�v1�1=2��2�e2�1=g��e2gy1e2gy0 ��

× e2�12g�v1�1=2����y1y0 �F 2v;
2
g

2 2v;
2
g

e2gy
� �

× F 2v;
2
g

2 2v;
2
g

e2gy0
� �

: �42�

If we return now to the initial variables,x and b and
substitute the constantg :

x� "������
2mD
p y; b � 1

D
f ; g � a"������

2mD
p ; �43�

we can write the density matrix in the following way:

r�x; x0;b� �
Xvmax

v�0

e2bEvrv�x; x0�: �44�

Let us now write down the normalizing integral for the
density matrix:Z1 ∞

2 ∞
r�x; x;b� dx

�
Xvmax

v�0

e2bD�2�a"=
�����
2mD
p ��v1�1=2��2�a2"2

=2mD��v1�1=2��2� ; Z�b�;

�45�
whereZ(b ) is the statistical sum. Now we can derive the
normalizing constantCv from the condition:Z1 ∞

2 ∞
rv�x; x� dx� 1: �46�
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This integral can be most easily evaluated if we use the
variablez (for the caseJ � 0 in Eq. (13), i.e. in the rotation-
less case):

z� 2

������
2mD
p
a"

e2ax � 2
g

e2ax
; �47�

so we obtain:

C2
v

1
a

g

2

� ���2=g�22v21�Z∞

0
dz e2zz��2=g�22v21�21 F 2v;

2
g
; z

� �� �2

� 1:

�48�
The integrals of this kind are solved, among others, in the

annex of Landau and Lifshitz textbook [9]. We wrote in the
paper [6] this result in a more compact form:

Jv �
Z∞

0
dz e2zzv21�F�2v; d; z��2

� v!G�n�G�d�
G�v 1 d�

Xv

k�0

v

k

 !
d 2 n 2 1

k

 !
d 2 n 2 1 1 k

k

 !
d 2 1 1 k

k

 ! ;

�49�
Identifying the exponents:

n � 2
g

2 2v 2 1; d � 2
g

2 2v �50�

we finally find the normalizing constant:

Cv �
aG

2
g

2 v
� �

v!G
2
g

2 2v 2 1
� �

G
2
g

2 2v
� �

2664
3775

1=2

: �51�

In this way, the solution of Bloch equation for Morse
potential, i.e. the density matrix has the following form:

r�x; x0;b� �
Xvmax

v�0

e2bEv
aG�bv 1 v 1 1�

v!G�bv�G�bv 1 1�

× e2�K=2��e2ax1e2ax0 ��e2axe2ax0 ��1=2�bv

× F�2v; bv;K e2ax�F�2v; bv;K e2ax0 �; �52�
where we have introduced the new notation for the sake of
simplification:

K � 2
g
� 2

������
2mD
p
a"

; bv � K 2 2v 2 1: �53�

If we use Laguerre polynomials instead of degenerated
hypergeometric function, according to the relation (see for
example, Ref. [10]):

Lbv
v �z� � G�bv 1 v 1 1�

v!G�bv 1 1� F�2v; bv 1 1; z�; �54�

than the expression for the density matrix can be written in a

more compact way:

r�x; x0;b� � exp 2bD 2
K
2
�e2ax 1 e2ax0 �

� �

×
Xvmax

v�0

av!bv exp b
D

K2 b2
v

� �
G�bv 1 v 1 1� �e2ax e2ax0 ��1=2�bv

× Lbv
v �K e2ax�Lbv

v �K e2ax0 �: �55�
In this way the problem stated is solved.

5. Conclusion

There is no doubt that the result obtained is not a new one,
it is already known in the literature. What we consider to be
new is the method applied, i.e. the method based on the
application of Fourier transformation of the density matrix.
In this way, on one hand we broaden the scope of the appli-
cation of the method to quantum statistical physics, and on
the other hand we include this method in the line with other
methods for the derivation of density matrix of Morse oscil-
lator, together with the “classical” method, based on Eq. (3)
[6], method of Feynman path integrals [11], Green’s func-
tion method [12], or, hybrid method of combining Laplace
transform and Green’s function [13].

The problem of the direct solution of the Bloch equation
for Morse potential still remains open, in the sense of obtain-
ing one closed (compact) analytical function, as in the case
of the harmonic oscillator, a function that would satisfy the
following limit:

lim
x!0;xp

rMorse� rharmonic: �56�

This would open the door to new, anharmonic (Morse)
spectroscopy (; [MS]), which would include, as the limit-
ing case for small values of the variablex, the present,
harmonic spectroscopy.

The interest for Morse potential is governed by its appli-
cations: the system of coupled Morse oscillators is conve-
nient for the description of molecular vibrations [14]; the
description of the potential energy surface—PES and vibra-
tions of the O–H bond is also performed in terms of the
Morse potential [15] etc.
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