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Abstract

Even if the harmonic oscillator potential has its advantages, it is unrealistic in

several aspects, when compared to the real interaction potentials involved in the

many branches of physics. As an intermediate potential between the harmonic

(an "ideal" potential) and the anharmonic potentials , in the present article we

deal with the so-called "pseudoharmonic potential". We have calculated the

expected values of some thermodynamical functions, which characterize the

quantum ideal gas of pseudoharmonical oscillators and some thermal moments

of the internuclear distance, generally and for two approximations related to

the internuclear distance r0.
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1. Introduction

In many branches of physics, even if the harmonic oscillator (HO) potential certainly

has its advantages and applications, it is unrealistic in several aspects. First, the HO

potential is used for its mathematical solvability, i.e. it allows the exact mathematical

solution of the Schr�odinger equation. When compared to the real interaction potentials

involved e.g. in diatomic molecule physics, then these disadvantages become more evident.

The HO potential is a good theoretical model, but comparison with the experimental

spectroscopic data shows that this model is often unsatisfactory, because many properties

of real physical systems are not harmonical but anharmonical. So, it is necessary to use

one of the anharmonic potentials.

As an intermediate potential between the HO potential (an "ideal" potential) and the

anharmonic potentials (such as the Morse potential, the more "realistic" potential), in the

present article we deal with the so-called pseudoharmonic oscillator (PHO) potential.

We consider that the physical system is a quantum ideal gas of the diatomic molecules,

which ful�l the conditions of the quantum canonical distribution. The PHO potential,

which describes the molecular vibrations, is a spherically symmetric potential, with the

e�ective potential de�ned as in Ref.[1]:
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where r0 is the equilibrium distance between the nuclei of the diatomic molecule.

This potential admits, also, the exact analytical solution for the Schr�odinger equation

and this is one of the reasons we deal with it. The radial eigenfunctions and eigenvalues

have been calculated in Ref.[1] and the �nal expressions are:
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where v and J are the vibrational and the rotational quantum numbers. We observe

that the vibrational and the rotational degrees of freedom are uncoupled, which o�ers

some mathematical advantages in the calculations related to the PHO potential. This will

become more evident in the next sections.Also, we have used the notations:
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2. Density matrix

In Ref.[2] we have deduced the expression for the whole (total) density matrix for PHO

in the position representation:
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where PJ(cos ) is the Legendre polynomial and  - the angle between the vectors ~r and

~r0.

The radial density matrix in the position representation �
(p)
J
(r; r0;�) was deduced as

the solution of the Bloch equation and it is [2]:
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where I�(x) is the modi�ed Bessel function.

The trace of the whole density matrix is the whole partition function:
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while the trace of the radial density matrix is the rotational partition function:
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Finally, we obtain:
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where we have used the following notations:
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The partition function Z(p)(�) is a quantity of maximal informational importance

because, by means of the partition function, it is possible to express all the characteristic

observables of the PHO quantum gas.

So, the internal energy of the system of quantum PHO gas is:
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where N is the whole number of the PHO in the quantum gas.

Using the expression of the internal energy, the speci�c heat for one mole (i.e. the

molar heat capacity) of the PHO-s quantum ideal gas is:
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For the PHO-s system, it is useful to write this expression with respect to the variable

y and, then, it becomes:
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On the other hand, the free energy of the PHO quantum gas, which corresponds to

one molecule (one PHO) is:
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In the previous equations we have used the superscript (p) for the observables concern-

ing the PHO, while the superscript (0) will be used for similar observables concerning the

HO.

3. Quantum-statistical averages

The quantum-statistical average or the thermal average for an observable A, which

characterize the quantum gas of pseudoharmonical oscillators obeying the quantum canon-

ical distribution can be calculate as follows:
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where we have used the corresponding expressions for the whole density matrix in the

position representation and the whole partition function.

The free energy is connected with the position thermal moments, that is, with the

quantum-statistical averages of the powers of displacement from the equilibrium position

operator. The formalism of the moments of the spectral density distribution has already

been applied in the case of spectra of oscillators coupled by kinetic terms (see, Ref.[3]

and references therein), though we use here not the spectral but the thermal moments.

For this reason, we consider that the free energy of the PHO-s gas is a function of some

parameters �h;m; ! and r0, generically denoted by �i, so that:
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On the other hand, in Ref.[4], we have extended the quantum virial and Hellmann-

Feynman theorems to the quantum-statistical averages in the case of the central �eld

potentials. As a consequence, we have obtained the following equation involving the

quantum-statistical averages:
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By using Eq.(4), the e�ective potential of the PHO (1) can be written in the following

manner:

V
(p)
J

(r) =
m!2

8
r2 �

m!2

4
r20 +

�h2

2m

�
�2 �

1

4

�
1

r2
: (18)

After straightforward calculations, by performing the partial derivatives of the free

energy expression (14) on the one hand and by applying Eq.(17) to the e�ective potential

(18) on the other hand, we obtain successively:
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By combining these relations, we obtain the following quantum-statistical or thermal

averages for the position variable:
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In order to verify the above obtained relations concerning the PHO we must apply the

harmonic limit de�ned as [2]:
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i.e. when we apply the harmonic limit to a certain observable A(p) concerning the PHO,

if the relation is proper, we must obtain the corresponding observable A(0) concerning the

HO-3D (the 3-dimensional isotropic harmonic oscillator) which has the frequency !0.

Before performing this limiting operation, it is useful to point out the harmonic limit

for the following expressions, which are obtained after straightforward calculations:
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4. Two approximations

It is easy to observe that the sum T�1� can be written in the following manner:
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Because of the presence of an in�nite series (like T� and their derivatives), the above

obtained quantum-statistical averages for the PHO can be calculated only numerically, i.

e. with limited precision. So, it is useful to simplify the expression of the sum denoted by

T�, taking into account the possible values of the equilibrium distance r0.

We examine two approximations concerning these values: the approximation of small

values of r0 (called m-approximation) and the approximation of large values of r0 (called

M-approximation). The corresponding observables and thermal moments will be denoted

by the m, respectively M-index.

In the m-approximation, i.e. if r0 is small, by performing the power series development

of the expression of � up to the power two, we obtain:
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For such values of temperature T for which the variable y is small, the sum T� can be
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where K�(z) is the Bessel function of the second kind. This function becomes, for � > 0

�xed and z ! 0 [6]:
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where �(�) is the Euler's gamma function.

In this manner we obtain:
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By using these last two equations and also Eqs.(9), (11)-(14), (24) and (25), after

straightforward calculations, we obtain successively:
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The M-approximation, i.e. the case of large values of r0 is more interesting. We can

transform the expression for � from Eq.(4) and perform the power series development of

the square root up to the power of order two:
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In this approximation, the sum T� becomes:
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As it is usual (see, e.g. Refs.[7], [8]), the last sum may be replaced by an integral.

The motivation is simple: if we again denote J + 1
2 = x, then the quantity before x into

the exponential (i.e. �� �h2

2mr
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�
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T
, where �rot is the rotational constant) is very small

for more gases and for all temperatures for which these gases are not in the liquid state.

In other words, the separation between the rotational energy levels is so small that this

replacement is wholly possible. So, the last equation becomes:
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Consequently, the sum T�1
M
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This integral leads to the integral exponential function (Ei(z))[5]:
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For the M-approximation are relevant the �rst two terms of the series development

and so, we obtain:
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By using the above obtained expressions for TM and T�1
M

, after straightforward calcu-

lations, Eqs.(9), (11)-(14), (24) and (25) lead to the following relations:
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The expression of the potential practically is the same in both representations, i.e.:

V
(p)
J;m(r) � V

(p)
J;M(r) � V

(p)
J

(r); (63)

since:

�2m � �2M � �2; (64)

if we neglect the term containing (r20)
4, respectively (r20)

�4. As a consequence, the

quantum-statistical averages for r2 and r�2 in both approximations can be obtained also

by the moment methods, i.e. by the method based on the application of hypervirial and

Hellmann-Feynman theorems, in the same manner as in Section 3. This fact shows that

both approximations are suitable.

This method allows the possibility also to obtain the quantum-statistical averages of

the other observables which characterize the quantum system (the PHO-s quantum ideal

gas). It is well known that, in these calculations, the partition function (i.e. the trace
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of the density matrix) is a very important quantity because this function contains all

statistical-thermodynamical information about the quantum system.

5. Conclusion

In the present article we try to present an alternative anharmonic potential confronted

by the harmonic oscillator (HO) potential. This potential is the so-called pseudoharmonic

oscillator (PHO) potential, which is a central �eld potential and a more realistic potential

in comparison with the HO potential. It becomes in�nite at the origin of the internu-

clear coordinate r and it extends only in the physical region (0 < r < 1). Due to the

mathematical facilities in the approach of the PHO (it admits an exact solution of the

Schr�odinger equation and the exact expression of the expected values), the PHO is useful,

for instance, for the examination of molecular vibrations.

In the article we have calculated some thermodynamical functions, which character-

ize the PHO-s quantum ideal gas (i.e. partition function, free energy, internal energy,

speci�c heat) and some thermal moments of the internuclear distance. Due to the fact

that these expressions contain the in�nite sum (T� and T�1� ), we have tried to obtain the

corresponding expressions for two approximations: m-approximation (for small internu-

clear equilibrium distance r0) and M-approximation (for large r0). In these expressions

the contribution of the anharmonicity is evinced in an analytical manner.

All these results (Eqs.(9), (11)-(14), (24) and (25)) can be obtained also if we use the

density matrix in coherent states representation. It is easy to demonstrate that the PHO

agrees with the Barut-Girardello coherent states. This question is the subject matter of

our other article [9]. Moreover, the connection between PHO and the Barut-Girardello

coherent states leads to the idea that the pseudoharmonical oscillator may have some

applications in quantum optics.
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