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Abstract – We have examined the excitation on coherent states of the pseudoharmonic oscillator
which are obtained by repeated action of the raising operator on the usual coherent states. By
using the density matrix approach, we have examined some interesting properties (including the
nonclassicality) of these states, both in pure and also in mixed (thermal) cases.
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Introduction. – The excitation on coherent states
(ECSs) can be considered as one of the possible gener-
alizations of coherent states (CSs). These states may be
useful in optical communications field which employed
the nonclassical signal beams, usually mixed with ther-
mal noise. On the other hand statistical properties of the
CSs are useful in quantum optics and quantum electron-
ics. The aim of this paper is firstly to build the ECSs for
the pseudoharmonic oscillator (PHO) which is an interme-
diate oscillator between the harmonic oscillator (HO) and
more anharmonic ones. Secondly, we study some proper-
ties of the ECSs for the PHO (of the Klauder-Perelomov
(KP) kind) and thirdly, the superposition of these states
with thermal light. The paper is organised as follows: in
the second section, the ECSs are obtained by repeatedly
operating the raising operator K+ of the SU(1, 1) group
on a usually normalizated KP-CSs of the PHO and it is
demonstrated that these states are really coherent states.
At the end of this section we will calculate the behaviour
of the Mandel parameter Qz,k;m and we will study their
dependence on z for different values of parameter m (the
number of added quanta), in order to analyze the statisti-
cal properties of the E(KP)CSs for the PHO. In the subse-
quent section, the thermal noise which may be considered
as being a thermal light, governed by a thermal density
operator with the canonical weight function, is examined
and we will find the P -quasi-distribution function.

(a)E-mail: nicolina.pop@et.upt.ro

The effective potential of the PHO is [1]
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The natural dynamic group associated with the
bounded states of the PHO is SU(1, 1) [1], whose discrete
representations are given by

K2|v, k〉= k(k− 1)|v+1, k〉, (3)

K+|v, k〉=
√

(v+1)(v+2k)|v+1, k〉, (4)

K−|v, k〉=
√

v(v+2k− 1)|v− 1, k〉, (5)

where v is the vibrational quantum number, the constant
k= 12 (λ+1) play the role of the Bargmann index, K+ and
K− being the raising and the lowering operators of this
group.
The Klauder-Perelomov coherent states (KP-CSs) of the

PHO are obtained if the generalized displacement unitary
operator exp(αK+−α∗K−) on the lowest state of the
quantum system |v= 0, k〉 are applied [2]:
|z, k〉 = exp(αK+−α∗K−)|0, k〉=

exp(zK+) exp(ΓK3) exp(−z∗K−)|0, k〉, (6)
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where α=− 12θ exp(−iϕ), z = α
|α| tan |α|,Γ= ln(1− |z|2)

and where the group generator K3 is

K3 =
1

2
[K−,K+], K3|v, k〉= (v+ k)|v, k〉. (7)

In terms of the basis vectors |v, k〉, the normalized
KP-CSs of the PHO may be expanded as [3]

|z, k〉= (1− |z|)2)k
∞
∑

v=0

zv
√

ρ(v; k)
|v, k〉, (8)

where the structure constants are expressed through the
Euler’s gamma-functions:

ρ(v; k) = Γ(2k)
Γ(v+1)

Γ(v+2k)
. (9)

Excitation on the KP-CSs of the PHO. – Theoret-
ically, the ECSs of the PHO can be obtained by repeatedly
operating the raising operator K+ of the SU(1, 1) group
on a usually normalized KP-CSs of the PHO:

|z, k;m〉 ≡N (m)k Km+ |z, k〉. (10)

So, the usual KP-CSs of the PHO is |z, k〉 ≡ |z, k; 0〉. In
order to calculate the normalization constant N

(m)
k , from

the condition 〈z, k;m|z, k;m〉= 1 it is useful to employ
the counterpart actions of the group generators on the
bra vectors 〈v, k|:

〈v, k|K+ =
√

v(v+2k− 1)〈v− 1, k|, (11)

〈v, k|K− =
√

(v+1)(v+2k)〈v+1, k|, (12)

which leads to the expression:

[N
(m)
k ]−2 = (1− |z|2)2k 1

Γ(2k)
G1222
(

−|z|2|. . .; 0
)

. (13)

Here there appear Meijer’s G-functions G1222(−|z|2|,
. . . , l) [4].
In the following, for writing convenience, we will use the

notations

G1222

(

−|z|2
∣

∣

∣

∣

∣

−m, 1− 2k−m;
0; l

)

≡

G1222
(

−|z|2|. . .; l
)

(14)
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∣

∣
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0, 0;

)

≡

G2022(|z|2|. . .; ) (15)

with l= 0, 1, 2, . . . .
Particularly, for l= 0:

1

Γ(2k)
G1222
(

−|z|2|. . .; 0
)

≡ S(m)0 (|z|2) =
∞
∑

v=0

(|z|2)v
ρ(v, k;m)

. (16)

Finally, the expansion of the excitation on the Klauder-
Perelomov coherent states E(KP)CSs for the PHO in
terms of the basis vectors is

|z, k;m〉 =
[

Γ(2k)

G1222 (−|z|2|. . .; 0)

]
1
2

×
∞
∑

v=0

zv
√

ρ(v, k;m)
|v+m, k〉. (17)

Consequently, the new structure constants are

ρ(v, k;m) = Γ(2k)
[Γ(v+1)]2

Γ(v+m+1)Γ(v+2k+m)
. (18)

Now, we must demonstrate that our obtained
E(KP)CSs, are really the coherent states i.e. that
they accomplish the minimal Klauder’s prescriptions [5]:
the normalization, the unity operator resolution and the
continuity in the complex z-variable.
The normalization condition we have already shown

when we obtained the normalization constant N
(m)
k , while

the unity operator resolution reads
∫

dµ(z, k;m)|z, k;m〉〈z, k;m|= 1. (19)

Yet, our tasks is to find the expression of integration
measure dµ(z, k;m). Their structure must be of the
following type:

dµ(z, k;m) =
d2z

π
h(|z|2, k;m) (20)

=
1

2

dϕ

π
d(|z|2)h(|z|2, k;m),

where z = |z|exp(iϕ), |z|< 1. Following a standard proce-
dure [1,3,5] this problem can be reduced to the Hausdorff
moment problem and the final expression becomes:

dµ(z, k;m) =
d2z

π
G1222
(

−|z|2|. . .; 0
)

×G2022
(

−|z|2|. . .;
)

. (21)

Due to the properties of Meijer’s G-functions [4], the
kernel of the integration measure is a positive function,
according to Klauder’s prescriptions [5].
Finally, the continuity in the complex z-variable is also

accomplished. This means by calculating the distance
between two E(KP)CSs.
The most convenient distance for explicit calculations is

the Hilbert-Schmidt distance [6]:

Dz′;z ≡ D(|z′, k;m〉〈z′, k;m|, |z, k;m〉〈z, k;m|) =
√
2
[

1− |〈z′, k;m|z, k;m〉|2
]
1
2 , (22)

which, after straightforward calculations, leads to the zero
limit: limz′→zDz′;z→ 0, since

|〈z′, k;m|z, k;m〉|2 =
G1222 (−z′∗z|. . .; 0)G1222 (−z′z∗|. . .; 0)
G1222 (−|z′|2|. . .; 0)G1222 (−|z|2|. . .; 0)

. (23)

44003-p2



Density matrix approach of the excitation on coherent states of the pseudoharmonic oscillator

So, our obtained E(KP)CSs are really coherent states.
Our obtained E(KP)CSs are related to nonlinear CSs

introduced (for the HO-1D) in [8] and [9], (see, also, the
excellent review article [10] or book [11]). Similarly, for the
PHO these states can be defined as the right eigenstates
of the generalized annihilation operator K̃− =K−f(N),
i.e. they are in fact the CSs of the Barut-Girardello
kind (not of the Klauder-Perelomov kind, as our obtained
E(KP)CSs):

K̃−|z, k;m〉= z|z, k;m〉. (24)

After some straightforward calculations (but which are
not the subject of this paper) we observed that our defined
E(KP)CSs |z, k;m〉 correspond to the following intensity-
dependent function:

f(N) =
N −m

N(N +2k− 1) , (25)

where N is the number operator, as we see below.
We will point out here that for all potentials (excluding

the HO-1D) the Barut-Girardello CSs are different from
the Klauder-Perelomov CSs, even if, as we have showed
earlier, these two kinds of states can be connected through
the suitable defined intensity-dependent function.
At the end of this section let us we point out that the

corresponding normalized density operator for the pure
E(KP)CSs (in fact, the E(KP)CSs-projector) is

ρ
(m)
0 ≡ |z, k;m〉〈z, k;m|=

[N
(m)
k ]2(K+)

m|z, k〉〈z, k|(K−)m. (26)

On the other hand, the naverage value for an observable
A in a pure E(KP)CS will be

〈A〉z,k;m ≡ 〈z, k;m|A|z, k;m〉=
Γ(2k)

G1222 (−|z|2|. . .; 0)

∞
∑

v′,v=0

(z∗)v
′

zv
√

ρ(v′, k;m)ρ(v, k;m)

×〈v′+m, k|A|v+m, k〉. (27)

In order to examine the photon (or, generally, the
boson) number distribution of the E(KP)CSs, we pay our
attention to the average values of the integer powers of
the photon number operator N whose action on the basis
vectors is

Nn|v+m, k〉= (v+m)n|v+m, k〉. (28)

The average values are

〈Nn〉z,k;m =
Γ(2k)

G1222 (−|z|2|. . .; 0)

×
∞
∑

v=0

(|z|2)v
ρ(v, k;m)

(v+m)n =

1

S
(m)
0 (|z|2)

n
∑

l=0

(

n

l

)

mn−lS(m)l , (29)

where

S
(m)
l (|z|2)≡

∞
∑

v=0

(|z|2)v
ρ(v, k;m)

vl. (30)

We immediately observe that (if we use the notation:
|z|2 ≡ x)

S
(m)
l�1 (x) =

(

x
d

dx

)l

S
(m)
0 =

l
∑

j=1

c
(l)
j x

j

(

d

dx

)j

S
(m)
0 . (31)

Generally, the positive coefficients c
(l)
j can be obtained

from the equality, according to our previous ansatz
(appendix B, [7]):

vl =

l
∑

j=1

c
(l)
j

v!

(v− j)! . (32)

For l= 1 and 2 these coefficients are equal to unity:

c
(1)
1 = c

(2)
1 = c

(2)
2 = 1.

The last equation is useful in order to point out
the following differentiation property of Meijer’s
G-functions [5]:

xj
(

d

dx

)j

G1222

(

x

∣

∣

∣

∣

∣

−m, 1− 2k−m;
0; 0

)

=

G1333

(

x

∣

∣

∣

∣

∣

0,− m, 1− 2k−m;
0; 0, j

)

=

G1222

(

x

∣

∣

∣

∣

∣

−m, 1− 2k−m;
0; j

)

. (33)

So, finally, we have

xj
(

d

dx

)j

G1222 (x|. . . , 0) =G1222 (x|. . . , j) , (34)

〈Nn〉z,k;m =mn

+

n
∑

l=1

(

n

l

)

mn−l
l
∑

j=1

c
(l)
j

G1222
(

−|z|2|. . . , j
)

G1222 (−|z|2|. . . , 0)
. (35)

In order to examine the statistics of the E(KP)CSs for
the PHO we will calculate the behaviour of the Mandel
parameter Qz,k;m defined as

Qz,k;m =
〈N2〉z,k;m− (〈N〉z,k;m)2

〈N〉z,k;m
− 1. (36)

This parameter measures the deviation of the vari-
ance of the photon distribution of a field state from
the Poissonian distribution which characterize a certain
“standard” state (e.g. the coherent state for the linear
harmonic oscillator |z〉= exp(− 12 |z|2)

∑∞
v=0

zv√
v!
|n〉). For

the E(KP)CSs of the PHO, after straightforward calcu-
lation, we obtain

Qz,k;m =

G1222(−|z|2|...,2)
G12
22
(−|z|2|...,0) −

[

G1222(−|z|2|...,1)
G12
22
(−|z|2|...,0)

]2

−m

m+
G12
22
(−|z|2|...,1)

G12
22
(−|z|2|...,0)

. (37)
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Fig. 1: Dependence of the Mandel parameter on |z| with m as
the parameter.

Particularly, for m= 0, we obtain the result for the
Mandel parameter of usual KP-CSs |z, k; 0〉:

Qz,k;0 =−
|z|2
1− |z|2 < 0. (38)

Because |z|< 1, it means that the states |z, k; 0〉 involves
according to the sub-Poissonian photon statistics (anti-
bunching effect). On the other hand, in this later case the
Mandel parameter are not dependent on the Bargmann
index k. In fig. 1 we have represented the dependence
of the Mandel parameter Qz,k;m as a function of |z|<1,
where the number of added quanta (photons) m is
considered as a parameter. We observe that only for the
“nonadded” case (i.e. for m= 0) the states are supra-
Poissonian, i.e. Qz,k;m > 0 for any |z|. These states belong
to the supra-Poissonian distribution and it is found to
have variance ∆N ≡ 〈N2〉− (〈N〉)2 greater than that for
a Poisson distribution. If m increases, for some small
values of |z|, the states |z, k;m〉 become sub-Poissonian
(with Qz,k;m < 0) and evidently for a certain value of |z|
they become Poissonian. If the number of added quanta
m increases, consequently also increases the domain of
nonclassicality. For all values of m the states |z, k;m〉
become strong classical for the limit |z| → 1 (fig. 2).
The influence of thermal noise. – It is well known

that the propagation of real signal beams is affected
by the interaction with thermal noise. Theoretically, the
thermal noise may be considered as being a thermal
light, governed by a thermal density operator with the
canonical weight function, i.e. by the density operator of
single-mode thermal-states PHOs, in thermal equilibrium,

Fig. 2: Dependence of the Mandel parameter on |z| with m as
the parameter, by evincing the boundary behaviour at |z| → 1.

characterized by the Hamiltonian H with eigenvalues [1]:

EvJ = �ω

(

v+
1

2

)

+
�ω

2
(2k− 1)− mω

2

4
r20. (39)

For the photon added (excited) Fock basis, the corre-
sponding density operator is

ρ
(m)
th =

1

Trρ
(m)
th

∞
∑

J,v=0

J
∑

M=−J
e−βEv+m,J |v+m, k〉〈v+m, k|,

(40)

where M is the quantum number of the projection of
angular moment vector on a certain specific axis. After
some simple calculations we obtained the following density
operator of a thermal state with m added photons:

ρ
(m)
th = (1−X)

∞
∑

v=0

Xv|v+m, k〉〈v+m, k|, (41)

i.e. the same as that corresponding to the vibrational
motion of the system of linear harmonic oscillators. We
have used the notation: X ≡ e−β�ω, β = 1

kBT
.

In the following, we will expand the density operator of
a thermal state in terms of projection operators onto the
E(KP)CSs of the PHO, so that

ρ
(m)
th =

∫

dµ(z, k;m)|z, k;m〉P (|z|2, k;m)〈z, k;m| (42)

and we try to find the P -quasi-distribution function. By
substituting the expressions for the E(KP)CSs and the
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integration measure, this problem is reduced to solving
the Hausdorff moment problem [7], which finally leads to
the expression

P (|z|2, k;m) = 1−X
X

G2022
(

X−1|z|2| . . . ;
)

G2022 (|z|2| . . . ; )
. (43)

Using the integrals of Meijer’s functions product, it can
be verified that the following equation holds:

∫

dµ(z, k;m)P (|z|2, k;m) = 1. (44)

For m= 0 we recovered the corresponding expression of
usual (nonexcited) KPCSs [1].
Moreover, the thermal average of an observable A, in

the E(KP)CSs representation is

〈A〉(m) =Tr(ρ(m)th A) =
∫

dµ(z, k;m)P (|z|2, k;m)〈A〉z,k;m, (45)

in which it is useful to know the averages in a pure
E(KP)CSs, i.e. 〈A〉z,k;m. The thermal average of an
integer power of the photon number operators is then

〈Nn〉(m) =
∫

dµ(z, k;m)P (|z|2, k;m)〈Nn〉z,k;m. (46)

After a lengthy but straightforward calculation, the final
result is

〈Nn〉(m) =mn+
n
∑

l=1

(

n

l

)

mn−l
l
∑

j=1

c
(l)
j j!(n̄T )

j , (47)

where we have used the expression of the main number of
thermal photons (the Bose distribution function):

n̄T =
X

1−X =
1

eβ�ω − 1 . (48)

Consequently, the thermal counterpart of the Mandel
parameter (called the thermal Mandel parameter [7]) is

Q(m) =
〈N2〉(m)− (〈N〉(m))2

〈N〉(m) − 1 =

(n̄T )
2−m

n̄T +m
. (49)

We quickly observe the following limits:

lim
T→0
n̄T = 0, lim

T→0
Q(m) =−1, (50)

lim
T→0
n̄T =∞, lim

T→0
Q(m) =∞. (51)

Their dependence on T , with the number of added
(excited) quanta m as a parameter is presented in
figs. 3, 4. In fig. 3 we have represented the quantum
Mandel parameter Q(m) (i.e. the counterpart of the
Mandel parameter for a pure ECS |z, k;m〉) as a function

Fig. 3: Dependence of the quantum Mandel parameter on
temperature with m as the parameter.

Fig. 4: Dependence of the quantum Mandel parameter on
temperature, for the H2 molecule, with m as the parameter.

of temperature T for different diatomic molecules (by
considering that a diatomic molecule is an appropriate
realization of the PHO model). We see that a lightly
molecule (H2) has a greater domain of temperature in
which the thermal excited state is considered as being
nonclassical (with Q(m) < 0), by comparing it to a hard
molecule (I2). Generally the conditions for different

44003-p5



D. Popov et al.

Table 1: Conditions for realization of different kinds of distri-
butions or of statistics.

Thermal Mandel Distribution or Temperature
parameter statistics T , TE =

�ω
kT

Q(m) =
n̄2T−m
n̄T+m

Q(m) < 0, sub-Poissonian T < TE

ln
(

1+ 1√
m

)

n̄T <
√
m

Q(m) = 0, Poissonian T = TE

ln
(

1+ 1√
m

)

n̄T =
√
m

Q(m) > 0, sub-Poissonian T > TE

ln
(

1+ 1√
m

)

n̄T >
√
m

kind of distributions or of statistics are presented in the
table 1.
These aspects can also be relevant by examining fig. 4

where we have represented the dependence of the thermal
Mandel parameter Q(m) as a function of temperature, the
number of added quanta (photons) acting as parameter.
We see that the parameter Q(m) decreases with the

increasing of m and consequently the domain of nonclas-
sical character of thermal states becomes greater.
The thermal Mandel parameter becomes negative if

the Bose distribution function n̄T is smaller than
√
m

which correspond to a temperature T < TE
ln (1+ 1√

m
)
, where

TE =
�ω
kB
is the Einstein-Debye characteristic temperature.

Concluding remarks. – In the present paper we have
built the excitation on the coherent states of the PHO,
by applying the raising operator K+ on the usual KP-CS
for the PHO. The succesive m-order application of this
operator has as consequence the generation of a excited
state |z, k;m〉. We have demonstrated that these states
fulfill all the conditions required for a coherent state
(the so called Klauder’s minimal prescriptions), i.e. the
normalization, the nonorthogonality, the continuity on the
complex variable and the identity operator resolution.
In a significant part of our paper we have paid our

attention to the examination of classical properties of
these states. In this sense we have examined the behaviour

of the Mandel parameter Qz,k;m as a function of variable
|z|, the number of added (or excited) quantam playing the
role of a parameter. The criterion of nonclassical nature of
these states is based on the sub-Poissonian statistics [11].
We have extended the examination of the statisti-

cal properties by examining the mixed (thermal) states
described by the density operator ρ. In this sense we have
used the previously defined thermal counterpart of the
Mandel parameter. This allow the development of a quan-
titative criterion to characterize the nonclasssical proper-
ties of the field on the domains of temperature where the
thermal Mandel parameter becomes negative.
In conclusion, we have introduced a new class of states

that are generated by succesive action of the raising
operator on the Klauder-Perelomov coherent states of
the pseudoharmonic oscillator and we have shown the
important nonclassical properties such states possess.
Generally, the E(KP)CSs belong to the class of photon

(or boson)-added coherent states which is an interesting
class of nonclassical states, as it is pointed out in [10,11].
To our knowledge, the construction of the E(KP)CSs for

the PHO, including also the thermal Mandel parameter
has not been previously derived in the literature.
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