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Abstract
In the paper, we have constructed and examined some properties of pair-coherent states of
Barut–Girardello kind for two noninteracting subsystems of pseudoharmonic oscillators. The
pseudoharmonic oscillator obeys SU(1,1) group symmetry, which was extensively used to
study many problems in quantum optics and quantum information theory.

PACS numbers: 02.20.Qs, 03.67.−a, 05.30.−d

1. Introduction

As is well known, groups involving simple Lie algebras (and
among them SU(1,1)) have been used to study many problems
in quantum optics [1]. Besides the one-dimensional harmonic
oscillator (HO-1D), an oscillator with many possibilities
of applications in quantum optics is the pseudoharmonic
oscillator (PHO) [2–4], whose effective potential is
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where mr is the reduced mass of the oscillating system (e.g.
the nuclei of a diatomic molecule), ω the angular frequency,
r0 the equilibrium bond length or the equilibrium distance
and J the rotational quantum number. Like HO-1D, the PHO
also admits the exact analytical solution of the Schrödinger
equation (see e.g. [2, 4, 5] and references therein). This
potential obeys SU(1,1) group symmetry, i.e. its raising
and lowering operators satisfy the commutation relation of
this group. Consequently, in a series of previous papers
we have constructed and studied some propertires of the
corresponding different kinds of associated coherent states
(CSs) of PHO, i.e. Barut–Girardello [3], Gazeau–Klauder [6]
and Klauder–Perelomov [7]. The aim of this paper is to
construct and examine some properties of pair-coherent states
(pair-CSs) for two noninteracting subsystems (a and b) of
PHOs and to indicate their possible applications in the theory
of quantum information.

2. Pair-CSs

The PHO obeys SU(1,1) group symmetry, with the
generators (K1, K2 and K3) and the raising and lowering
generators K± = K1 ± iK2 [3]. Here, we consider only the
representations for which the operator K3 is diagonal and
has a discrete spectrum. The corresponding Hilbert space is
spanned by the complete orthonormal basis |n; k〉 (where the
real number k is the Bargmann index and n = 0, 1, 2, . . .) and
the ground state |0; k〉 is given by the condition K−|0; k〉 = 0,
all states being obtained by the action of the raising operator
K+ (where 0(x) is Euler’s Gamma function):

|n; k〉 =

[
0(2k)

0(n + 1)0(2k + n)

]1/2

(K+)
n
|0; k〉. (2)

The energy eigenvalues of the PHO are well known:
En J = h̄ω(n + k) − mω2r2

0 /4 [2]; up an additional constant,
the energy spectrum of the PHO has the same structure as the
energy spectrum of the HO-1D, both the spectra being linear
in the vibrational quantum number n. We have used this fact
to construct the different kinds of CSs (Barut–Girardello and
Klauder–Perelomov [6]), but in the present paper, we focus
our attention on the Barut–Girardello pair-CSs in the case of
a bipartite composite quantum system and on their possible
applications in quantum optics and quantum information
theory. Let us introduce a two-mode Fock basis |n, m; k〉 =

|n; k〉 ⊗ |m; k〉 that characterizes a bipartite system of PHOs
of the same reduced mass mr and angular frequency ω (e.g.
a quantum gas of PHOs or a two-mode field). A realization
of SU(1,1) group algebra in terms of two independent modes
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of the field, denoted by a and b, is given by the following
operators:

K (ab)
+ ≡ K (a)

+ K (b)
+ , K (ab)

− ≡ K (a)
− K (b)

− ,

K (ab)
3 ≡

1
2

(
K (a)

3 + K (b)
3

)
.

(3)

The action of generators of mode a (similarly for mode
b) on |n, m; k〉 is

K (a)
+ |n, m; k〉 =

√
(n + 1)(n + 2k)|n + 1, m; k〉, (4)

K (a)
− |n, m; k〉 =

√
n(n + 2k − 1)|n − 1, m; k〉, (5)

K (a)
3 |n, m; k〉 = (n + k)|n, m; k〉. (6)

The generators of mode a are independent from those of
mode b, so that they commute: [K (a)

(···), K (b)

(···)] = 0, where the
subscript (· · ·) is ± or 3. Consequently, the above-defined
two-mode operators also satisfy SU(1,1) group algebra, i.e.
fulfil the following commutation relations:[

K (ab)
3 , K (ab)

±

]
= ±K (ab)

± ,[
K (ab)

− , K (ab)
+

]
= 2K (ab)

3 .

(7)

For two independent boson annihilation operators, a
pair-CS |z; q〉 was firstly defined by Agarwal [8] as an
eigenstate of both the pair annihilation and the number
difference operators. But here, because the number operator
is defined with connection to the generator K (···)

3 , i.e.

N (a)
= K (a)

3 − k , N (b)
= K (b)

3 − k, (8)

the pair-CSs for the PHO must be defined slightly differently,
i.e. as an eigenstate of both raising operators K (ab)

− ≡

K (a)
− K (b)

− and the difference operator of K (···)
3 , i.e. 1N (ab)

≡ K (a)
3 − K (b)

3

K (ab)
− |z; q〉 = z|z; q〉, (9)

1N (ab)
|z; q〉 = q|z; q〉, (10)

where z is the complex variable and q > 0 is the degeneracy
parameter whose significance will be identified below. Due
to the presence of the Bargmann index k, as an additional
parameter, these states can also be regarded as deformed
pair-CSs. The action of the operators K (ab)

− and 1N (ab) on
the vectors |n, m; k〉 is

K (ab)
− |n, m; k〉 =

√
n(n + 2k − 1)

×

√
m(m + 2k − 1)|n − 1, m − 1; k〉, (11)

1N (ab)
|n, m; k〉 = (n − m)|n, m; k〉. (12)

So, the two-mode Fock basis |n, m; k〉 is organized in a
correlation manner, i.e. the boson numbers of the two modes
differ by the eigenvalue of the operator 1N (ab). Assuming
that the difference between the boson numbers in both the
modes is constant, without loss of generality, we can take
this difference, say q , to be positive: q = 0, 1, 2, . . . , i.e.
q = m − n. In this case, the difference in the boson numbers

in the two modes is conserved and the state has the symmetry
properties of the SU(1,1) group.

The expansion of |z; q〉 in the two-mode basis |n, n +
q; k〉 is

|z; q〉 =
[

0 F3
(
; 2k, q + 1, q + 2k; |z|2

)]−1/2

×

∞∑
n=0

zn

√
ρ(n; k; q)

|n, n + q; k〉, (13)

where the positive quantities (called the structure constants of
the pair-CSs) are

ρ(n; k; q) = 0(n + 1)

×
0(2k + n)

0(2k)

0(q + 1 + n)

0(q + 1)

0(q + 2k + n)

0(q + 2k)
(14)

and where we have used the hypergeometric functions
n Fm(a1, . . . , an; b1, . . . , bm; x) [9].

In order to see that the above-obtained vectors |z; q〉 are
really the coherent states, we must verify if they accomplish
Klauder’s minimal prescriptions [10] regarding a coherent
state, i.e. a CS must (a) fulfil the identity resolution with a
positive weight function; (b) be a continuous function in the
complex z-variable, i.e. the map z ∈ C → |z〉 ∈ L2(R) must
be continuous; (c) be normalizable but nonorthogonal; (d) be
temporally stable; and (e) fulfil the action identity.

By taking the complex variable z = r exp(iϕ), the
resolution of identity operator∫

dµ(z; q)|z; q〉〈z; q| = 1 (15)

requires that the integration measure dµ(z; q) have the
following structure:

dµ(z; q) =
dϕ

2π
d(r2)

0 F3(; 2k, q + 1, q + 2k; r2)

0(2k) 0(q + 1)0(q + 2k)

× G40
04

(
r2

| 0, 2k − 1, q, q + 2k − 1
)
. (16)

Because both functions 0 F3(; . . . ; r2) and G40
04(r

2
| . . .)

cannot be expressed through elementary functions, the
obtained pair-CSs |z; q〉 belong to the category of hyper-
geometrical coherent states [11]. For k > 1/2 both functions
involved in the expression of dµ(z; q) are positive, which
assures that the integration measure will also be positive.
The continuity of the functions |z; q〉 in variable z is assured
since for z′

→ z it is easy to show that we have |z′
; q〉 →

|z; q〉. By calculating the overlap (or scalar product) of two
pair-CSs, we can see that the states |z; q〉 are normalizable
but nonorthogonal.

In order to examine the temporal stability, we consider
the whole Hamiltonian of two noninteracting parts, a and b,
e.g. two laser beams that are propagating independently of
each other, corresponding to the two modes of the two-mode
coherently correlated states: H (ab)

= H (a) + H (b) [12], with
the whole energy En + En+q = h̄ω(2n + q + 2k) −

mω2

2 r2
0 ≡

E (q)

0 + 2h̄ωn.
The time-dependent pair-CSs can be defined as a

result of applying the evolution operator associated with

2
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H (ab), i.e. U (t; 0) ≡ exp(−i/h̄ H (ab) t), on the usual pair-CSs
considered as defined for t = 0, i.e. |z; q〉 ≡ |z(t = 0); q〉:

|z(t); q〉 = U (t; 0) |z; q〉 ≡ exp
(
−i E (q)

0 t
)
|ze−2iωt

; q〉, (17)

which shows that, apart from an exponential oscillatory
term, a pair-CS remains coherent with the complex argument
depending exponentially on the time. In other words, the
time-dependent pair-CS oscillates around the corresponding
time-independent pair-CS.

After these calculations, we can conclude that our
obtained ket vectors |z; q〉 are really coherent states.

3. Properties of the pair-CSs

For an observable A that characterizes the bipartite quantum
system, the expression of averages or expectation values in the
pair-CSs representation is

〈z; q|A|z; q〉 =
1

F

∞∑
n,n′=0

z∗nzn′

√
ρ(n; q; k)ρ(n′; q; k)

× 〈n, n + q; k|A|n′, n′ + q; k〉. (18)

Here, we have used the notation F ≡ 0 F3(; 2k, q + 1, q +
2k; |z|2) and in the next, with F ′, F ′′, . . ., we will denote the
first, second, . . . , derivatives with respect to the argument |z|2.

The aim of this section is to examine the statistical
properties of the pair-CSs, and consequently we need to
calculate the mean values only of observables that are integer
powers of the number operators:

N (a)
= K (a)

3 − k , N (b)
= K (b)

3 − k, (19)

N (ab)
= N (a) + N (b)

= 2
(
K (ab)

3 − k
)
, (20)

whose actions on the bipartite basis vectors are

N (a)
|n, n + q; k〉 = n|n, n + q; k〉, (21)

N (b)
|n, n + q; k〉 = (n + q)|n, n + q; k〉, (22)

N (ab)
|n, n + q; k〉 = (2n + q)|n, n + q; k〉. (23)

The mean values of the first two integer powers, i.e.

〈N (ab)
〉z;q = q + 2|z|2

1

F
F ′, (24)

〈
[N (ab)]2

〉
z;q = 5q2 + 4(2q + 1)|z|2

1

F
F ′ + 4|z|4

1

F
F ′′, (25)

are useful to calculate the Mandel parameter, defined as [3]
(which indicates the behaviour of pair-CSs |z; q〉)

Qz;q ≡ 〈N (ab)
〉z;q

×


〈[

N (ab)
]2

〉
z;q

− 〈N (ab)
〉z;q(

〈N (ab)〉z;q
)2 − 1

 . (26)

For the pair-CSs of the PHO, this expression becomes

Qz;q = (4q − 1)
q + |z|2 F ′

q + 2|z|2 F ′
+ 4|z|4

F F ′′
−

(
F ′

)2

F
(
q + 2|z|2 F ′

) . (27)

Table 1. Behaviour of pair-CSs.

pair-CSs Large |z|, |z| → ∞ Small |z|, |z| → 0

q 6= 0 Qz;q
|z|→∞

=
(4q − 1)

(
q +

√
|z|

)
q + 2

√
|z|

Qz;q
|z|→0

=
(4q − 1)

(
q + |z|2

)
q + 2|z|2

q > 1 supra-Poissonian

q = 0 Qz;o
|z|→∞

= −0.5 Qz;o
|z|→0

= −0.5

sub-Poissonian

It is interesting to examine the asymptotic behaviour of
these expressions for small and large values of |z| to determine
the behaviour of pair-CSs (for the asymptotic formula of
hypergeometrical function, see [13]). The possible situations
are presented in table 1.

At the same time, the probability that the n excitations of
mode (part) a and n + q excitations of mode (part) b will be
found in the pair-CS |z; q〉 is

P |z;q〉

n = |〈n, n + q|z; q〉|
2

=
1

F

(
|z|2

)n

0(n + 1)0(2k+n)

0(2k)

0(q+1+n)

0(q+1)

0(q+2k+n)

0(q+2k)

. (28)

By using the asymptotic formula for the hypergeometric
function [13], this probability distribution function can be
split, up to an elementary function, into four generalized
Gamma probability functions depending on the variable

√
|z|

with unitary scale parameter:

P |z;q〉

n = 2
(

2π
√

|z|
)3/2

(√
|z|

)n
e−

√
|z|

0(n + 1)

(√
|z|

)2k+n−1
e−

√
|z|

0(2k + n)

×

(√
|z|

)q+n
e−

√
|z|

0(q + n + 1)

(√
|z|

)q+2k+n−1
e−

√
|z|

0(q + 2k + n)

≡ 2
(

2π
√

|z|
)3/2

P |z;0〉

n+1 P |z;0〉

2k+n P |z;q〉

q+1+n P |z;q〉

q+2k+n, (29)

where the first two probabilities (being independent of q) are
referred to subsystem a, the last two being connected with
subsystem b.

4. Thermal properties of the pair-CSs

If we consider that the whole quantum system (a + b) obeys
the canonical distribution, then a mixed state, in which
both individual parts have an equal probability distribution
function, is characterized by the following density operator:

ρ(q)
=

1

Z (q)

∞∑
n=0

e−β(En+En+q )
|n, n + q; k〉〈n, n + q; k|. (30)

The diagonal expansion of the density operator in terms
of the pair-CSs

ρ(q)
=

∫
dµ(z; q) |z; q〉P(|z|2; q)〈z; q| (31)

3
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is fulfilled if the P quasi-distribution function is expressed in
terms of Meijer’s G-functions as

P
(
|z|2; q

)
=

e−β

(
E (q)

0 −2h̄ω

)
Z (q)

×
G40

04

(
eβ2h̄ω

|z|2 | 0, 2k − 1, q, 2k − 1 + q
)

G40
04

(
|z|2 | 0, 2k − 1, q, 2k − 1 + q

) .

(32)

5. Even- and odd-pair-CSs

Generally, the even and odd CSs are useful in quantum
information theory, to use the pair-CSs as an entangled
resource [14, 15]. For the PHO these pair-CSs can be
constructed if we use the pair-CSs with the negative complex
variable:

| −z; q〉 =
1

√
F

∞∑
n=0

(−z)n

√
ρ(n; k; q)

|n, n + q; k〉. (33)

The overlap between the pair-CSs with positive and
negative complex variable z is symmetric: 〈−z; q|z; q〉 =

〈z; q| − z; q〉. Then, the balanced even (+) and odd (−)
pair-CSs for the PHO are defined as follows:

|z; q〉
(±)

= N (±) (|z; q〉 ± | − z; q〉) . (34)

The normalization function N (±) is obtained from the
condition (±)

〈z; q|z; q〉
(±)

= 1.
To calculate the Mandel parameter for the whole number

operator N (ab)
= N (a) + N (b) for the even and odd pair-CSs for

PHO, we observe the following symmetries:

〈z; q|
[
N (ab)

]s
| −z; q〉 = 〈−z; q|

[
N (ab)

]s
|z; q〉

≡
〈[

N (ab)
]s 〉

z,−z;q ,

〈z; q|
[
N (ab)

]s
|z; q〉 = 〈−z; q|

[
N (ab)

]s
| − z; q〉

≡
〈[

N (ab)
]s 〉

z,z;q
,

(35)

(±)
〈z; q|

[
N (ab)

]s
|z; q〉

(±)
≡

〈[
N (ab)

]s
〉(±)

z,z;q

= 2
[
N (±)

]2
[〈[

N (ab)
]s

〉
z,z;q

±

〈[
N (ab)

]s
〉

z,−z;q

]
. (36)

The Mandel parameter for the even and odd pair-CSs
becomes

Q(±)

z;q =

〈N 2
〉
(±)

z,z;q −

(
〈N 〉

(±)

z,z;q

)2

〈N 〉
(±)

z,z;q

− 〈N 〉
(±)

z,z;q . (37)

Even if their expression seems to be intricate, it
can provide some useful information about the statistical
properties of even and odd pair-CSs of the PHO.

6. Concluding remarks

The PHO has a linear energy vibrational spectrum and, like
the HO-1D, admits the construction of three kinds of CSs. In
the present paper, we have constructed the Barut–Girardello
pair-CSs for the PHO. We have examined the nonclassical
properties of these pair-CSs, by calculating the corresponding
Mandel parameter and also by using the density operator
formalism: both for pure states (a pair-CSs projector) and
for mixed (thermal) states. Generally, the CSs approach not
only greatly simplifies the calculations of various expectation
values for the examined quantum system, but also may
be of potential use in developing the quantum information
theory. Particularly, the pair-CSs are important in quantum
information processing (as an entanglement resource or as a
quantum transmission channel [14–16]).

The main difference between the pair-CSs and the pair
of CSs lies in the property of entanglement of the pair-CSs.
Namely, it is evident that a pair-CS cannot be decomposed into
a tensorial product of two usual Barut–Girardello CSs [3], one
referring to subsystem a and another to subsystem b. As the
entanglement resource, the pair-CSs can be used, for example,
in the quantum teleportation protocol analysed in [15] (not
reproduced here due to paper length requirements). Namely,
in this protocol, initially Alice and Bob share a state that is just
a pair-CS. Consequently, Alice makes a joint measurement of
the target state (that will be sent to Bob) and her component of
received pair-CS and the result of joint measurement will be
sent to Bob via the classical channel. Moreover, the pair-CSs
can always be distillable in a phase-damping channel, so they
are useful in quantum information processing.
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